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Introduction 

In order to improve the ability of the Conservation Assessment and Prioritization System (CAPS) 
to assess the ecological integrity of rivers and streams, we developed new stream metrics to 
better address stressors affecting these riverine ecosystems. Five new metrics were considered, 
although we were not able to develop metrics for two of these stressors (temperature 
alteration and geomorphic alteration) because sufficient data were not yet available. Three new 
metrics were developed for three important stressors affecting rivers and streams: hydrologic 
alterations, nitrogen enrichment, and phosphorus enrichment. These metrics are based on 
empirical models that were developed to look at the relationship between human basin 
modifications and the resulting impacts on nutrient concentration and stream hydrology. 
Natural (unaltered) conditions were estimated by simulating basins with no alterations, allow 
us to calculate the difference between natural and altered conditions with respect to these 
stressors. 

Following is a description of the models for nitrogen and phosphorus enrichment that served as 
basis for CAPS metrics. Attached as Appendix A is a journal publication that describes 
development of a flow alteration model that we used to create the hydrologic alteration metric. 

Summary of the Nitrogen and Phosphorus Enrichment Modeling Approach 

Empirical models were developed to look at the relationship between human basin 
modifications and the resulting impacts on nutrient concentrations. We developed multiple 
linear regression models, using principal component analysis to guide independent variable 
selection, to estimate current, altered nutrient concentrations from a full range of both natural 
and anthropogenic basin characteristics. Natural nutrient concentrations are then estimated by 
simulating basins with no alterations, allowing the difference between the natural and altered 
nutrient concentrations to be investigated. The model suggests that discharges, cropland and 
cranberry bogs are correlated with increases in phosphorus concentrations, and impervious 
surface, discharges and cropland area are correlated with increases in nitrogen concentrations. 

  



Data 

Data for the nutrient concentrations, total phosphorus (TP) and total nitrogen (TN), were taken 
from the Massachusetts Department of Environmental Protection (Mass DEP) Division of 
Watershed Management (DWM) WPP final water quality data for the 2005-2010 monitoring 
years. Selected sites had at least four measurements and were not excluded by the Mass DEP 
quality control process. For nitrogen, the TN concentration data were available from 621 sites 
with an average of 7 samples per site and range of 4 – 70 measurements. For phosphorus the 
TP concentration data were available from 569 sites with an average of 7 samples per site and 
range of 4 – 70 measurements. The dates of data collection for the data set ranged in time from 
1/2005 to 11/2009. After removing basins smaller than 2 km2, there were 434 sites, shown 
below in Figure 1. 

 

Figure 1 Locations of 434 sites for stream nutrient concentration data collected by Mass DEP 2005-2009. 

  



Basin data 

Data for the basin characteristics was collected from various sources as shown below in Table 1 
and Table 2. 

Table 1 Anthropogenic basin characteristics included in the model and sources of data. *Category for which 
details of the individual basin variables follow. 

Variable Source 

Population 2010 census data 

Discharge NPDES discharges 2000-2005 in SYE wateruse db 

Septic 1990 census data · % households on septic 

Imperv Mass GIS 2006 

Land Use %* Mass GIS 2005 Land Use 

 
Land Uses Percentages: Alterations 

• Cropland 
• Cranberry_bog 
• Nursery 
• Orchard 
• Pasture 
• TOTAL PLANTED 

 
• Commercial 
• Industrial 
• Urban_open 
• Urban_public 
• Transportation 
• Mining 
• Waste_disposal 
• Junkyard 
• TOTAL URBAN 

 
• Multi_family_residential 
• High_density_residential 
• Medium_density_residential 



• Low_density_residential 
• TOTAL RESIDENTIAL 

 
• Spectator_recreation 
• Participatory_recreation 
• Golf 
• Water_based_recreation 
• TOTAL RECREATION 

 
Table 2 Natural basin characteristics included in the model and sources of data. *Category for which details of 
the individual basin variables follow. 

Variable Source 
Basin Area CAPS delineation 
Climate* PRISM 
Bedrock Lithology* Mass GIS 2004, Group A 
Land Use %* Mass GIS 2005 Land Use 

 
Climate 

• Max Temp 
• Min Temp 
• Mean Precipitation 
The PRISM 800m climate data for 1981-2010: 
http://www.prism.oregonstate.edu/products/matrix.phtml?vartype=tmin&view=maps 

 
Bedrock Lithology 

 Basin_Sedimentary 
 Calcpelite 
 Carbonate_Rocks 
 Granite 
 Mafic_Rocks 
 Metamorphic_Rocks_Undivi 
http://www.geo.umass.edu/stategeologist/frame_massgeo.htm 

Land Uses Percentages: Natural 

• Shrub_swamp 
• Bog 
• Shallow_marsh 

http://www.prism.oregonstate.edu/products/matrix.phtml?vartype=tmin&view=maps
http://www.geo.umass.edu/stategeologist/frame_massgeo.htm


• Deep_marsh 
• Vernal_pool 
• TOTAL LOWLAND 
 Open_land 
 Forest 
 Forested_wetland 
 Water_lentic 
 Water_lotic 
http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-
of-geographic-information-massgis/datalayers/lus2005.html 

Method 

We performed natural log transformation of both the independent and dependent variables, 
consistent with previous regression models relating basin characteristics to lake or stream 
nutrient concentrations (Sorrano 2008, Dodds and Oakes 2004). Alternative transformations 
were evaluated both numerically, by considering univariate correlations between variables, as 
well as visually, by examining plots of independent against dependent variables. No 
improvement was found compared to the log-log model results. 

ln (𝑐𝑐) = 𝛽𝛽0 + 𝛽𝛽1𝑙𝑙𝑙𝑙(𝑋𝑋1 + 1) + 𝛽𝛽2𝑙𝑙𝑙𝑙(𝑋𝑋2 + 1) + ⋯𝛽𝛽n𝑙𝑙𝑙𝑙(𝑋𝑋n + 1) 

where:    

 c  average nutrient concentration 

 𝑋𝑋𝑖𝑖  basin characteristic i 

 𝛽𝛽𝑖𝑖 model coefficient for basin characteristic 𝑋𝑋𝑖𝑖 

 n the number of basin characteristics used as independent variables 

 𝑖𝑖  1 to n 

Adding one before taking the natural log of these terms allows a correct mapping between the 
value of the ln(X+1) term in the linear regression model and the value of X, so that when X = 0, 
ln(X+1) = 0. This solution allows for the correct representation of the ‘removal’ of 
anthropogenic modifications from the regression equation by setting the value of the 
corresponding terms to zero. The approach also avoids the problem of ln(0) being undefined. 

Because the natural log is only defined for values above zero, any basin characteristic with 
negative values was shifted to be nonnegative by adding the minimum value plus a small 
increment to all values. Only one variable required shifting (min temp) as the remaining natural 
variables were all non-negative. 

http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/lus2005.html
http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/lus2005.html


We used principal component analysis (PCA) to select a subset of the 51 highly inter-correlated 
basin characteristics considered as independent variables in each regression. Variables with the 
highest eigenvector loadings within inter-correlated sets of variables in the first set of 
components, determined using a scree test, were maintained in the set of candidate variables. 
The variable reduction process also involved determination of which characteristics had the 
highest univariate correlation coefficients with the dependent variable, and maintenance of 
variance inflation factors (VIFs) below 10, along with the analysis of the PCA loadings.  

Based on the final sets of 7 and 8 variables, we conducted an “all subsets” regression algorithm, 
written in the statistical language R (R Development Core Team, 2006), which minimized the 
Akaike information criterion (AIC) to estimate the regression parameters and develop the final 
equations. One outlier was removed based on a very high Cook’s D (Kutner, 2005). 

Weightings for the basin characteristics were calculated based on an ‘aquatic distance’ of each 
30m square cell to the target point which, in this case, is the location of the sample taken for 
the nutrient concentration measurement. The ‘aquatic distance’ is calculated based on the land 
use of each cell traversed to reach the target point, whether the cell contains a stream channel 
and the slope of the land surface of the cell. The approach is based on a method presented by 
Randhir et al., 2001. 

Models with weighted and non-weighted basin characteristics were compared. Variables 
weighted by aquatic distance had significantly higher univariate correlations with the 
dependent variables and the models using the weighted basin variables resulted in higher 
adjusted R2 values, so only weighted variables were in the final models. 

 

 

 

 

  



Results 

Total Phosphorus 

 

 

 

Figure 2 Percent change in Total Phosphorus due to each anthropogenic basin modification in the final model. 
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Total Nitrogen 

 

 

 

Figure 3 Percent change in Total Nitrogen due to each anthropogenic basin modification in the final model. 
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Results for total phosphorus, presented in Figure 2, show discharge as having the largest 
contribution to phosphorus concentration for the 434 stream locations in Massachusetts 
modeled in this study. The percent cropland and percent cranberry bogs are the other two 
basin modifications that the final regression model shows as having a significant impact on the 
phosphorus concentration. 

For nitrogen the model results, presented in Figure 3, show that the percent impervious surface 
in a basin is correlated with a large percent increase in nitrogen. Discharge is also correlated 
with large increases in nitrogen, very high for some basins that receive large discharges, and 
percent cropland is also shown to be significant in the final model. 
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It is clear that humans are impacting the water cycle. There is interest in both determining where and
how aquatic systems are most impacted by human development, and in determining the types and loca-
tions of basin modifications that are having the most impact. Instead of complex physical models of indi-
vidual basins, we propose the use of a statistical approach to look at the relationship between human
basin modifications and the resulting impacts on streamflow. We develop a set of multiple linear regres-
sion models, using principal component analysis to guide independent variable selection, to estimate cur-
rent, altered streamflow from a full range of both natural and anthropogenic basin characteristics.
Natural streamflow is then estimated by simulating basins with no alterations, and the difference
between the natural and altered streamflow are summarized by use of the ecochange percent metric.
The model suggests that dam storage, water withdrawals and discharges, and land use all impact stream
flow and non-point source land use modifications such as impervious cover are potentially increasing low
flows. The approach provides an opportunity to increase our understanding of the relation between
human basin modifications and changes in streamflow. The model developed could potentially be used
to estimate streamflow alteration at ungaged sites.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Humans have been impacting the water cycle for thousands of
years. In the past, a primary focus of human development was
gaining control of water, securing a reliable supply of water and
developing methods to increase agricultural production. The abil-
ity for humans to accomplish these goals has rapidly increased
and significant alterations in the water cycle have occurred since
industrialization (Vorosmarty and Sahagian, 2000; Jackson et al.,
2001). Most commonly, the attainment of these goals outweighed
any consideration for negative impacts on the functioning of the
natural ecosystem. We are only now coming to appreciate the ben-
efits of services provided to society by naturally functioning river-
ine systems (Poff et al., 1997; Richter et al., 1997; Jackson et al.,
2001; Postel and Richter, 2003; Tharme, 2003).

Human development is clearly altering the natural characteris-
tics of streamflow around the world (Jackson et al., 2001; Voro-
smarty and Sahagian, 2000). The open question is: how are
human alterations of the landscape changing streamflow? Many
studies have focused on climate change (Risbey and Entekhabi,
1996; Chiew and McMahon, 2002; Milly et al., 2005), optimizing
reservoir operations (Jager and Smith, 2008; Labadie, 2004; Suen
and Eheart, 2006; Wardlaw and Sharif, 1999), or the total amount
of water available to withdraw for human consumption (Weiskel
et al., 2007; Archfield et al., 2010). However, changes to the land
surface are also directly altering streamflows (Konrad and Booth,
2002; Foley et al., 2005; Poff et al., 2006). Thus, in addition to alter-
ations to streamflow caused by ‘‘point sources’’, such as dams and
water use, we can now benefit from making use of technology
allowing us to consider ‘‘non-point source’’ alterations when eval-
uating human impacts on streamflows.

Previous assessments of distributed effects of human activities
on water quality (Soranno et al., 2008) have not attempted to
quantify the cumulative effect of various human activities on water
quantity. The many studies addressing sources of hydrologic alter-
ation have focused on the link to a specific type of basin alteration.
For example, many studies have focused on analyzing the relation-
ship between impervious cover or other land use changes to hydro-
logic alteration without considering other effects such as reservoir
storage and water withdrawals (Jennings and Jarnagin, 2002; Poff
et al., 2006; Roy and Shuster, 2009; Weiskel et al., 2010; Jacobson,
2011; Yang et al., 2011). It is now possible to take a more holistic
approach with newly available data and analysis tools. Much
geospatial data needed to quantify basin alterations is now

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2013.09.008&domain=pdf
http://dx.doi.org/10.1016/j.jhydrol.2013.09.008
mailto:homa@ecs.umass.edu
http://dx.doi.org/10.1016/j.jhydrol.2013.09.008
http://www.sciencedirect.com/science/journal/00221694
http://www.elsevier.com/locate/jhydrol
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available and the spatial extent and level of detail are increasing
(Carlisle et al., 2010; Coles et al., 2010; Falcone et al., 2010; Weiskel
et al., 2010). This study focused on developing a method of evalu-
ating the relative impacts of both point and non-point source
anthropogenic basin modifications on streamflow, and estimating
the degree of hydrologic alteration at any site.

A major challenge in quantifying human alterations to stream-
flow is defining the ‘‘natural’’ or ‘‘unaltered’’ conditions. Human
alterations to the land surface of a basin are more easily quanti-
fied because these types of alterations, such as percent impervious
cover or percent agricultural land, can simply be considered non-
existent in an unaltered state. Quantification of the alterations to
streamflow, on the other hand, requires a pre-alteration charac-
terization of streamflow. This ‘‘natural’’ state of streamflow is
typically represented by flow measurements before the basin
modifications, or by estimating a natural flow for the basin (Pec-
hlivanidis et al., 2011). Long records of stream flow data are re-
quired for the first approach and are often not available during
the time periods needed before and after a modification such as
construction of a dam or some other land alteration. Models for
estimating natural flow range from the basic Drainage Area Ratio
method to regional regression models developed from ‘least al-
tered’ reference sites (Vogel et al., 1999; Armstrong et al., 2004;
Kroll et al., 2004; Sanborn and Bledsoe, 2006; Armstrong et al.,
2008; Archfield et al., 2010; Carlisle et al., 2010). These models
make use of a range of geological, climate and topographic char-
acteristics to estimate natural flows, and require the selection of
reference sites with minimally altered drainage basins. Major lim-
itations of these models include the requirement to somewhat
arbitrarily identify what constitutes ‘‘minimally’’ altered, and the
limited and decreasing number of minimally altered drainage
basins.

An alternate modeling approach to estimate streamflow for a
basin is to develop a physically-based hydrological model that is
calibrated to represent the ungaged basin (Choi and Deal, 2008;
Karvonen et al., 1999). Model parameter values are typically drawn
from land cover attributes. Archfield et al. (2010) used regional
regression to estimate parameter values for ungauged sites based
on calibrated parameter values at nearby gauged sites. However,
model structure uncertainty, input uncertainty and calibration
uncertainty (Steinschneider et al., 2012) impede the application
of these techniques for estimation of natural flow when prediction
of alteration effects are likely to be dominated by uncertainty.
These rainfall runoff models are typically costly and time consum-
ing to build and complex to calibrate, so there is a high cost barrier
and there can be a high degree of uncertainty in the results (O’Con-
nell et al., 2007; Bulygina et al., 2011). However, new methods are
being developed to auto-calibrate rainfall runoff models for un-
gaged catchments using regionalized data for soil hydrology and
land use classifications (Bulygina et al., 2011; McIntyre and Mar-
shall, 2010; Choi and Deal, 2008).

We chose to address the challenge presented by lack of defini-
tively natural streamflow data by using all gaged sites in our
regression model. We propose it is possible to learn about the rela-
tionship between basin alterations and streamflow by including all
available sites in the model, not only pristine or ‘least altered’ sites,
but sites representing a full range of basin alterations. Though
there may be risk of additional model error and bias by using less
homogenous data, the ability to consider a large number of charac-
teristics for a large number of sites makes this approach appealing.
Basin characteristics, both natural and anthropogenic, are included
as potential independent variables to predict streamflow, and ‘‘nat-
ural’’ streamflow is estimated by setting the anthropogenic terms
to zero. The difference between observed streamflow and
estimated ‘‘natural’’ streamflow provides an estimate of stream-
flow alteration. Estimation of reference conditions for nutrient
concentrations has been done in this way by Dodds and Oakes
(2004) and Soranno et al. (2008). However, the only known study
at this time to have modeled streamflow as a function of both nat-
ural and anthropogenic characteristics was done by Fitzhugh and
Vogel (2011), who developed regional regression models of the
median 1-day maximum flow to evaluate the impact of dams on
flood flows in the US.

We suggest that there are multiple benefits to this approach.
More sites are available if the regression model development is
not limited to those with only minimally altered drainage basins,
allowing the use of modeling techniques that are only possible
with a larger data set. This approach does not require the rather
arbitrary definition of what constitutes ‘‘minimally’’ altered, which
is highly problematic in human-dominated landscapes such as the
northeastern United States. Also, this approach presents the oppor-
tunity to estimate a ‘completely’ natural state, as compared to only
estimating a ‘least altered’ state. Lastly, although not unique to this
approach, this approach allows for estimation of hydrologic alter-
ation at any ungaged site with characteristics within the range of
the training data, with no streamflow record required.
2. Methods

2.1. Metric of alteration

In order to estimate the impact of human alterations on stream-
flow, we need to be able to quantify both the anthropogenic basin
modifications and the resulting alterations of streamflow. The cur-
rent conditions of anthropogenic modifications (such as percent
impervious surface) can directly represent the basin alterations,
since the natural state without modification would be, for example,
no impervious surface at all. However, estimation of the alteration
of streamflow requires metrics that represent the change from nat-
ural streamflow to altered streamflow.

Extensive research has been conducted on flow statistics to rep-
resent alterations to natural streamflow regimes. Many different
hydrologic indices have been developed to characterize flow alter-
ation (Richter et al., 1996; Olden and Poff, 2003; Gao et al., 2009;
Poff et al., 2010; Poff and Zimmerman, 2010). The selection of a
few simple statistics in the past has progressed, given new tech-
niques and new computing power, to the development of many
new approaches to quantify streamflow alteration. However,
extensive sets of statistics such as The Nature Conservancy’s 32
Indices of Hydrologic Alteration (IHA) statistics are often reduced
to a smaller subset when actually applied. Gao et al. (2009) con-
ducted an analysis of the IHA statistics using principal component
analysis (PCA) and concluded that the annual ecodeficit and eco-
surplus statistics (Homa et al., 2005; Vogel et al., 2007) best sum-
marized the variability represented in the IHA. As shown in Fig. 1,
the ecodeficit is defined as the area below the ‘natural’ flow dura-
tion curve (FDC) and the ecosurplus is defined as the area above
the natural FDC, both normalized by the total area under the nat-
ural median annual FDC. The ecodeficit represents the amount of
water that is not available due to the alterations and the ecosur-
plus represents extra water due to the alterations. A form of these
two statistics are used in this study to summarize the effect of the
alterations in each basin.

A benefit of using these particular statistics is that the ecodeficit
and ecosurplus are calculated by comparing natural and altered
FDCs (Vogel and Fennessey, 1994). Therefore, only FDCs need to
be estimated for an ungaged site in order to calculate this metric
of alteration; generating an estimate of a full daily time series of
flow is not necessary. For this study an FDC is estimated by select-
ing a set of exceedance probabilities (0.05, 0.10, 0.20, 0.30, 0.40,
0.50, 0.60, 0.70, 0.80, 0.90, 0.95) and predicting each flow quantile



Fig. 1. An example of natural and altered Flow Duration Curves (FDCs) showing the
definition of the ecodeficit and ecosurplus metrics.

198 E.S. Homa et al. / Journal of Hydrology 503 (2013) 196–208
with a separate regression equation. Each regression equation
takes the general form of Eq. (1), described below.

lnðQiÞ ¼ b0 þ b1 lnðX1Þ þ b2 lnðX2Þ þ � � � þ bn lnðXnÞ ð1Þ

where Qi, stream flow at exceedance probability i; Xj, basin charac-
teristic j; n number of variables; bj, model coefficients for basin
characteristic j.

The set of regression equations for the various streamflow
quantiles provide estimates of actual flow for any basin for which
the data are available to provide the independent variables. The
estimate of natural flow is calculated from the same equations,
but with the anthropogenic terms set to zero. The difference (or
delta) in predicted versus natural streamflow as a percentage of
the natural streamflow is measured at each modeled exceedence
probability, as shown in Fig. 2. The average percent change in flow
is calculated by normalizing the delta by the streamflow quantile
and then averaging across the deficit or surplus. These percents
are referred to as the ecodeficit percent and ecosurplus percent,
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Fig. 2. An example of the estimation of natural and altered Flow Duration Curves
(FDCs) for a sample basin. The delta between the points estimating the FDCs, shown
at one exceedence probability by the two headed arrow, is used to estimate the
ecodeficit and ecosurplus statistics.
and are a representation of %DQ. In order to rank sites by total
alteration, these two percentages were summed to calculate a ‘‘to-
tal ecochange’’ metric.
2.2. Data

The USGS released the Geospatial Attributes of Gages for Evalu-
ating Streamflow version II (GAGES II) in September, 2011 which
provides delineated watershed boundaries for 9322 USGS stream
gages across the nation. This dataset includes over 200 basin char-
acteristics for each gage from a variety of primary sources. Daily
streamflow data for at least 20 years is available from the USGS
for each gage included in the dataset. The geospatial data includes
both physical and climate data (soil, topology, temperature, precip-
itation, etc.) and anthropogenic basin characteristics (population,
impervious surface, water use, dam density/storage). A reference
to the original data source for each characteristic is provided (Fal-
cone et al., 2010).

The data for the basin characteristics for our study come from
the GAGES II dataset except for water use and discharges. These
data were drawn from water withdrawal and discharge data avail-
able for basins within the state of Massachusetts (MA) as described
below. The subset of sites selected for this study includes the six
New England states: Maine, New Hampshire, Vermont, Massachu-
setts, Rhode Island and Connecticut. There are 406 stream gages in
these six states included in the GAGES II dataset. Of these 406, 190
gages have daily flow records available for 10/1/1996 to 9/30/2011
with fewer than 150 days of missing data over this fifteen year per-
iod. There are 42 out of these 190 drainage basins that are com-
pletely within MA, and thus 42 sites with point withdrawal and
discharge data in addition to the basin characteristic data provided
by Gages II.

Drainage basins for the 190 gages in the NE range in size from
10 to 25,000 km2, and from 12 to 1785 km2 for the subset of 42 ba-
sins within MA. Fig. 3 shows the locations of the 190 selected gages
throughout New England.

The natural basin characteristics in GAGES II that were consid-
ered as candidate independent variables included drainage area,
gage location (latitude and longitude), monthly basin temperatures
and precipitation, geology (% soil types), elevation, stream density,
and percent of land cover classes, resulting in a total of 86 vari-
ables. The anthropogenic basin characteristics that we considered
as candidates included population, road density, impervious cover,
number of dams, dam density, dam storage and percent of land use
classes, resulting in a total of 12 variables. Data for the anthropo-
genic characteristics selected as independent variables in the final
model (see below) will be described in more detail here. Fig. 4 be-
low provides box plots of the four selected anthropogenic basin
characteristics.

The data for watershed percent impervious surfaces was de-
rived from the 30 m resolution U.S. Geological Survey (USGS) Na-
tional Land Cover Database 2006 (NLCD06) (Falcone et al., 2010).
The values for the 190 selected drainage basins ranged from
0.0025% for the Allagash River basin in northern Maine to 42.0%
for the Aberjona River at Winchester, MA. The minimum percent
impervious cover of all the basins within MA was 0.245% for a sub-
basin of the Swift River.

The dam storage variable (STOR_NID_2009) in GAGES II is
summed for each basin from a 2009 National Inventory of Dams
(NID) database after being cross checked and corrected by the
USGS (U.S. Army Corps of Engineers, 2010; Falcone et al., 2010).
The database includes a total of 4083 dams in the six NE states
with storage data, 1590 of those with storage data in MA. The
values for dam storage for the NE basins ranges from 0 (17 basins)
to 1093 megaliters/km2 for the basin of the Chicopee River at



Fig. 3. Locations of the 190 USGS stream gages in the six Northeast states used in this study with available flow records for the period 10/1/96–9/30/10.
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Indian Orchard, MA (Note that the Chicopee River basin includes
the Quabbin Reservoir, the largest reservoir in New England).

The GAGES II water withdrawal variable was derived from
county-level estimates (Hutson, 2007) which do not provide en-
ough accuracy for our study given that basin sizes started at
10 km2 and counties in this part of the country are much larger.
The water use database developed for the Massachusetts Sustain-
able Yield Estimator provided the opportunity to utilize much
more accurate estimates of average basin water use for the basins
within the state of MA (Archfield et al., 2010). The database in-
cludes 6581 georeferenced points with ground water (GW) and
surface water (SW) withdrawal and/or discharge rates regulated
by the MA Department of Environmental Protection and the U.S.
Environmental Protection Agency (EPA). The points covered by
the regulations included GW and SW public water supply with-
drawals greater than 100,000 gal/day, pollutant discharges greater
than 10,000 gal/day, and National Pollutant Discharge Elimination
System (NPDES) regulated SW discharges (Archfield et al., 2010).
The values of water withdrawals for the 42 MA basins ranged from
0 (2 basins) to 285 megaliters/yr/km2 for the basin of the Jones Riv-
ers at Kingston. The values for the discharges ranged from 0 (8 ba-
sins) to 87.1 megaliters/yr/km2 for the North Nashua River basin.

The best possible match was made between these dates for ba-
sin characteristics and the years of averaged flow data. The imper-
vious surface data is from the NLCD06 which is 2006. The dam
storage data is from 2009, and the water use and discharge data
for Massachusetts is an average of data from 2000–2004.

We should point out that we are using an average of a 15 year
period to represent a point in time (the most ‘‘current’’ point avail-
able), and comparing it to pre-settlement time. We propose that
change during this 15 year time is not significant compared to
change during the �400 year period. The GagesII NLCD01_06_DEV
basin characteristic representing the Watershed percent which
changed to ‘‘Developed’’ (urban) land (NLCD classes 21–24) be-
tween NLCD 2001 and 2006 range from 0% to only 6.1%, whereas
NLCD01_06_DEV representing the Watershed percent ‘‘developed’’
(urban) in 2006 ranged from 0.05% to 92.4% for the 42 study sites
in MA.

2.3. Model development

We calculated streamflow quantiles from the USGS flow record
for each stream gage (n = 190) at each of the exceedance
probabilities for the period of record, 10/1/96 to 9/30/10. We used
principal component analysis (PCA) to select a subset of the 98
highly intercorrelated basin characteristics in GAGES II (Appendix
A) to be used as the independent variables in each regression
equation. Variables with the highest eigenvector loadings within
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Fig. 4. Box plots showing the distributions of anthropogenic basin characteristics selected for the final model. Percent impervious cover (imperv) and storage volume
(storage) include values for the 190 sites in New England. Water usage (withdraw) and water discharges (discharge) include values for the 42 sites in MA.
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intercorrelated sets of variables in the first set of components,
determined using a scree test, were maintained in the set of candi-
date variables. The variable reduction process also involved deter-
mination of which characteristics had the highest univariate
correlation coefficients with the dependent variable, and mainte-
nance of variance inflation factors (VIFs) below 5, along with the
analysis of the PCA loadings.

The final set of variables were selected by determining the set
with the minimum mean square error (MSE) using an ‘‘all subsets’’
regression algorithm, written in the statistical language R (R Devel-
opment Core Team, 2006). Two outliers were removed when they
exhibited very high Cook’s D (Kutner, 2005). One of the two outli-
ers removed had four times more storage than any other wa-
tershed due to the fact that almost one third of the basin was
covered by the Quabbin Reservoir.

Use of a power law regression equation was consistent with
previous streamflow regression models (Vogel and Kroll, 1992;
Archfield et al., 2010; Vogel et al., 1999). Because the natural log
is only defined for values above zero, any basin characteristics with
negative values were shifted to be nonnegative by adding the min-
imum value plus a small increment to all values. For the set of eight
natural variables selected in the final regression equations, only
two required shifting (ASPECT_EASTNESS and LNG_GAGE) as the
remaining natural variables were all above zero.

For the anthropogenic variables, however, modifications to the
form of the terms in the regression equation were necessary. For
the anthropogenic variables, a value of zero has a specific physical
meaning in the model – the anthropogenic modification does not
exist – and the model should indicate that the flow was unaltered
by the characteristic. Three of the four anthropogenic variables in
the final regression models had a significant proportion of zero val-
ues, and the remaining variable, impervious cover, had a minimum
value of 0.0025%. Adding one before taking the natural log of these
terms allowed a correct mapping between the value of the ln(X + 1)
term in the linear regression model and the value of X, so that
when X = 0, ln(X + 1) = 0. This solution allows for the correct repre-
sentation of the ‘removal’ of anthropogenic modifications from the
regression equation by setting the value of the corresponding
terms to zero. The approach also avoided the problem of ln(0)
being undefined.

We did not take the same approach of adding one to the natural
basin characteristics when modeling the relationship to flow. It
makes physical sense for flow to approach zero as drainage area
approaches zero. For the other natural characteristics the value of
zero does not have any particular expected behavior on flow, and is
outside the scope of the model because the values do not approach
zero. The final regression equation is shown below in Eq. (2).

lnðQ iÞ ¼ b0 þ bn1lnðXn1Þ þ bn2lnðXn2Þ þ � � � þ ba1lnðXa1 þ 1Þ
þ ba2lnðXa2 þ 1Þ þ � � � ð2Þ

where Qi, stream flow at exceedence probability i; Xnj, natural basin
characteristic j; Xak, anthropogenic basin characteristic k; b, model
coefficients.The model translated into real space becomes the
following:

Qi ¼ eb0 ðXn1Þbn1 ðXn2Þbn2 � � � ðXa1 þ 1Þba1 ðXa2 þ 1Þba2 ð3Þ

The first regression was run using data for the 190 stations in
the six New England states against the full range of potential inde-
pendent variables except water use and discharge because the
georeferenced point data for water withdrawals and discharges
were only available for Massachusetts. Therefore, a second regres-
sion was performed using the output of the first stage and the
point withdrawals and discharges summed for the 42 basins that
were completely within the state of Massachusetts. Consequently,
the second stage regression focused on estimating the additional
variance explained by withdrawals and discharges conditional on
the variance accounted for by the other variables. The resulting
set of equations for estimating the flow at each exceedence proba-
bility is shown below in Eq. (5).
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First stage:

lnðQ iÞ ¼ b0 þ bn lnðXnÞ þ � � � þ ba lnðXa þ 1Þ þ � � � ð4Þ

Second stage:

lnðQ iÞ ¼ c0 þ c1½b0 þ bn lnðXnÞ þ � � � þ ba lnðXa þ 1Þ þ � � �� þ c2

� lnðXwth þ 1Þ þ c3 lnðXdis þ 1Þ ð5Þ

where Qi, stream flow at exceedence probability i; Xn, natural basin
characteristics; Xa, anthropogenic basin characteristics; b, model
coefficients for the first regression; c, model coefficients for the sec-
ond regression; Xwth, average water withdrawal/km2; Xdis, average
water discharge/km2.
3. Results

Eight natural basin variables and four alteration variables were
selected for the final set of regression equations (Table 1). Not all
the variables were selected in the final regression equations to pre-
dict each exceedence probability. The set of variables that mini-
mized MSE were selected for each exceedence probability. The
minimization of MSE is equivalent to maximization of the adjusted
R2 value since both are normalized by the difference between the
number of observations and the number of parameters in each
model.

The final regression equations are shown in Table 2. Each col-
umn represents the regression equation for estimating streamflow
at a particular exceedence probability. Each row shows the values
of the coefficients for the same variable in the different regression
equations. Most coefficients tend to increase or decrease gradually
across exceedance probabilities.

Model performance statistics are presented in Table 4. The Coef-
ficient of Determination (R2) ranges from 0.852 to 0.983 across
exceedance probilities. The MSE is in units of the natural log of
flow and is thus difficult to interpret in its absolute scale. Conse-
quently, the number that is commonly reported for regional
regression log-transformed models is the standard error (SE),
which is shown in the table and reported as the coefficient of var-
iation translated from log space to real space. The higher SE for
lower flows (higher exceedance probabilities) is consistent with
previous models estimating low flows (Maidment, 1993; Kroll
et al., 2004). The p-values for each coefficient of each regression
equation are shown in Table 3. Though some of the p-values are
above 0.10 for some exceedence probabilities, each variable has
p-values at multiple exceedence probabilities that are below 0.05.
Table 1
Variable names and descriptions for the set of basin characteristcs selected as independent v
GAGES II database. Data for withdrawals and discharges are from the MA SYE wateruse dat
only data (�).

Variable name Description

DRAIN_SQKM Watershed drainage area, sq km, as delineated in our basin b
LNG_GAGE Longitude at gage, decimal degrees
BAS_COMPACTNESS Watershed compactness ratio, = area/perimeter^2 � 100; highe
T_MAX_BASIN Watershed average of maximum monthly air temperature (�C)

(1971–2000)
RH_SITE Site average relative humidity (percent), from 2 km PRISM, de
‘DEC_PPT7100_CM Mean December precip (cm) for the watershed, from 800 m PR
SANDAVE Average value of sand content (%) (STATSGO, 1997)
ASPECT_EASTNESS Aspect ‘‘eastness’’. Ranges from�1 to 1. Value of 1 means water

watershed is facing/draining due west
IMPNLCD06 Watershed percent impervious surfaces from 30-m resolution
STOR_NID_2009 Dam storage in watershed (‘‘NID_STORAGE’’); megaliters total

liters = 1,000 cubic meters) (2009)
Withdrawals� Water withdrawals in the basin; megaliters per year per sq km
Discharges� Water discharges in the basin; megaliters per year per sq km.
A ‘leave one out’ cross validation was conducted by leaving out
each of the 42 study sites in Massachusetts from both stages of
regression and then estimating a value for this site from the result-
ing model. The Nash-Sutcliffe efficiency (NS) (Nash and Sutcliffe,
1970; Moriasi et al., 2007), shown in Table 5, was then calculated
to evaluate the predictive ability of the model. The high NS values
along with the fact that the MSE results for the cross validation are
very close to the MSE values for the regression support the predic-
tive ability of the model.

Boxplots in Figs. 5–8 display the estimated percent alteration of
streamflow at each exceedance probability for the 42 stations in
Massachusetts. In these figures, the estimated independent effect
of each anthropogenic variable is viewed by setting one alteration
variable to zero at a time and computing the percent alteration of
streamflow at each exceedance probability.

Fig. 5 shows that on average dam storage in a basin decreases
high flows (i.e., negative percent alteration at small exceedance
probabilities), consistent with standard expectations for dammed
flows and, in many cases, the purpose of the dam. The same figure
shows storage increasing median flows and having no significant
effect on low flows.

Fig. 6 depicts the effects of impervious cover on streamflow and
reveals on average a decrease in high flows and an increase in low
flows. These results contrast with the expectations often cited of
increased impervious cover lowering base flows (Jacobson, 2011).
However more and more studies now provide evidence of the
opposite effect, consistent with our results, of impervious cover
increasing low flows (Price, 2011). The decrease in high flows (peak
flows are not represented in the model since the lowest excee-
dence probability modeled is 0.05) could be occurring due to
stormwater storage systems which occur more frequently in areas
with higher impervious cover.

Figs. 7 and 8 depict the estimates of the alterations caused by
water withdrawals and discharges, respectively. Both figures show
effects on streamflow in the expected manner – decreased by with-
drawals or increased by discharges, with the strength of the effect
greatest at lower flows. Note that the variability among basins in-
creases with the mean percent alteration, such that the range for
the 0.95 exceedance probability varies from just above zero to over
100% change in the natural streamflow.

Fig. 9 shows the percent alteration in streamflow when all of
the anthropogenic modifications are considered together. For these
42 MA basins, the model shows that the cumulative effect of the
anthropogenic basin modifications decreases high flows and in-
creases low flows, and thus decrease the variability in daily
streamflows. This will be discussed in more detail below.
ariables in the final regression equations. Data for all except two (�) are from the USGS
abase. Min, max and mean values shown of the 190 sites in 6 NE states except for MA

Min Mean Max

oundary 9.4 1142.2 25049.5
�73.5 �71.7 �67.2

r number = more compact shape 0.7 1.6 3.6
from 800 m PRISM, derived from 30 years of record 7.0 12.9 16.0

rived from 30 years of record (1961–1990) 65 67.7 74
ISM data. 30 years period of record 1971–2000 6.2 9.9 15.6

18.3 45.8 76.0
shed is facing/draining due east, value of�1 means �0.99 0.32 0.99

NLCD06 data (2006) 0.0026 4.6 51.3
storage per sq km (1 megaliters = 1,000,000 0.0 136.3 4565.1

. (2000–2004) 0 38.5 127.6
(2000–2004) 0 13.5 87.1



Table 2
Model coefficients for each regression equation estimating flow at the given exceedence probability.

Term Exceedence probability

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95

Intercept 10.1 2.5 �0.18 0.23 7.20 14.5 22.4 34.3 44.1 46.2 45.5
area 0.97 1.00 1.02 1.03 1.04 1.04 1.05 1.07 1.14 1.22 1.31
lng_gage �2.24 �1.49 �1.78 �2.31 �3.98 �5.90 �7.79 �10.2 �12.6 �13.3 �11.9
compact – – 0.04 0.05 0.06 0.07 0.09 0.09 0.16 0.29 0.39
tmax_mean �0.67 �0.48 �0.34 �0.34 �0.46 �0.57 �0.72 �1.21 �1.68 �2.10 �2.67
humidity – 0.55 1.04 1.22 1.22 1.60 1.75 1.66 1.86 1.71 0
ppt_dec 0.70 0.81 0.98 1.16 1.30 1.31 1.36 1.44 1.63 2.24 2.68
sand – 0.07 0.13 0.17 0.20 0.23 0.26 0.28 0.29 – –
eastness 0.03 0.01 0 �0.02 �0.02 �0.03 �0.03 �0.04 �0.07 �0.12 �0.15
imperv �0.02 �0.03 �0.03 �0.02 – – – 0.06 0.11 0.15 0.19
storage �0.03 �0.02 �0.01 – – 0.01 0.01 0.01 – – –
withdraw – – – – �0.01 �0.02 �0.02 �0.04 �0.04 �0.06 �0.08
discharge – – 0.01 0.02 0.03 0.03 0.04 0.04 0.05 0.11 0.17

Table 3
P values for each coefficient of each regression equation estimating flow at the given exceedence probability.

Term Exceedence probability

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95

area <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
lng_gage 0.061 0.153 0.036 0.001 <0.001 <0.001 <0.001 <0.001 0.001 0.015
compact 0.143 0.069 0.105 0.076 0.063 0.117 0.035 0.022 0.027
tmax_mean <0.001 <0.001 0.002 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
humidity 0.013 0.005 0.015 0.006 0.009 0.041 0.073 0.297
ppt_dec <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
sand 0.164 0.006 0.001 0.001 0.001 0.002 0.006 0.049
eastness 0.004 0.216 0.302 0.014 0.005 0.010 0.004 0.004 0.001 <0.001 0.001
imperv 0.193 0.028 0.014 0.133 0.019 0.001 0.004 0.010
storage 0.002 0.001 0.164 0.168 0.127 0.266
withdraw 0.208 0.080 0.004 0.003 0.012 0.032
discharge 0.307 0.155 0.148 0.040 0.011 0.010 0.005 0.006 0.010

Table 4
Coefficient of determination (R2), Mean Square Error (MSE) and real space Standard
Error (SE) for the final regression equations for each exceedence probability.

Exceedence probability R2 MSE SE (%)

0.05 0.983 0.017 13
0.10 0.987 0.014 12
0.20 0.992 0.010 10
0.30 0.992 0.010 10
0.40 0.991 0.011 11
0.50 0.990 0.013 11
0.60 0.989 0.015 12
0.70 0.988 0.017 13
0.80 0.981 0.029 17
0.90 0.926 0.141 39
0.95 0.852 0.375 67

Table 5
Nash Sutcliffe Efficiency (NS), Mean Square Error (MSE) and real space Standard Error
(SE) for the final cross validation results for each exceedence probability.

Exceedence probability NS MSE SE (%)

0.05 0.980 0.020 14
0.10 0.984 0.016 13
0.20 0.988 0.013 11
0.30 0.990 0.011 11
0.40 0.988 0.014 12
0.50 0.986 0.016 13
0.60 0.985 0.017 13
0.70 0.984 0.020 14
0.80 0.975 0.034 18
0.90 0.901 0.169 43
0.95 0.806 0.445 75
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Fig. 10 depicts the ecochange metric for each of the 42 stations
in MA and reveals the east-west development gradient across the
state. Within this coarse-scale gradient in ecochange there is local
variation driven by local differences in each basin.

4. Discussion

We conducted an empirical analysis of the relationship between
anthropogenic modifications in drainage basins and the
streamflow exiting these basins. A broad range of anthropogenic
characteristics were considered given newly available GIS data
allowing new and more accurate representations of anthropogenic
modifications than in the past. These initial results provide insight
about which alterations show clear signals to streamflow alter-
ation and their relative impacts. In addition, the model can be used
to estimate hydrologic alteration at ungaged sites.

There is little question that water withdrawals and discharges
will have an impact on the amount of water in a basin. In fact,
many models directly calculate water availability by subtracting
withdrawals and/or adding discharges (Weiskel et al., 2010). It is
reassuring that the empirical signal from the regression model
confirms these expected results, and we see in Figs. 7 and 8 that
these direct inputs and outputs of water have a larger percent im-
pact on the lower flows. A benefit of modeling the water withdraw-
als and discharges in the same way as the other modifications is
the ability to compare their relative impacts on streamflow.

Dams are built to provide hydroelectricity, reliable water sup-
ply, flood risk reduction, recreational uses and for many other rea-
sons. Most of these dams are specifically meant to modify the
magnitude and timing of natural flow in a river in order to control
water storage in a reservoir. Studies that have focused on isolating
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Fig. 5. Model-estimated percent alteration of streamflow due to reservoir storage
in each of the 42 Massachusetts basins.

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

0
20

40
60

80
10

0

Exceedence Probability

%
 d

el
ta

 Q
 d

ue
 to

 im
pe

rv

Fig. 6. Model-estimated percent alteration of streamflow due to impervious cover
in each of the 42 Massachusetts basins.
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Fig. 7. Model-estimated percent alteration of streamflow due to water withdrawals
in each of the 42 Massachusetts basins.
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Fig. 8. Model-estimated percent alteration of streamflow due to water discharges
in each of the 42 Massachusetts basins.
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the impact of dams on streamflow have confirmed that dams typ-
ically decrease peak flows, increase minimum flows and decrease
flow variability. These results are not surprising given the intent
and operation of dams (Poff et al., 2006; Magilligan and Nislow,
2005; Fitzhugh and Vogel, 2011). Our results are consistent with
this expectation and reveal a decrease in the highest streamflows
(i.e., 0.05–0.20 exceedance probabilities) with dam storage
(Fig. 5). The increase in streamflow at intermediate flows (i.e.,
exceedence probabilities 0.5–0.7) suggests that dam storage effects
are not limited to just high and low flows. The signal strength at
low flows was not strong enough to discern an effect.

The impact of impervious surface and other land use changes
related to urbanization, for which impervious surface is often a
surrogate, on streamflow has been a topic researched over many
decades. Jacobson (2011) and Price (2011) provide reviews of
impervious surface studies and propose that the general consensus
from the first studies in the 1960s and 70s was that an increase in
impervious cover resulted in an increase in high flows and a de-
crease in low flows due to less infiltration and recharge. Studies
conducted in the more recent decades now provide evidence of
complex interactions that produce various sets of possible results.
Impervious surface may decrease recharge, but there is evidence of
possible simultaneous decreases in evapotranspiration (ET) actu-
ally resulting in higher low flows (Jacobson, 2011; Price, 2011;
Schueler et al., 2009). Others point to the possibility of areas of
higher impervious cover having more leaks in water distribution
pipes or heavily watered lawns which could contribute to higher
low flows (Poff et al., 2006). Our results suggest an increase in
low flows with a progressively higher percent change as the flows
get lower (Fig. 6). These results are consistent with scenarios
involving lower ET and possibly also explained by leaky pipes
and heavily watered lawns.

4.1. Scope and limitations

Our modeling approach offers a couple of major advantages
over other approaches. One of the most compelling features of
our approach is that our estimate of natural streamflow is an
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Fig. 9. Model-estimated percent alteration from the cumulative effects of all four
basin alterations in the final regression equations: impervious cover, storage
volume, withdrawals and discharges.
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attempt to represent ‘completely natural’ conditions, and not just
‘least altered’’ conditions. Studies using reference basins to repre-
sent natural conditions all need to compromise ‘natural’ in some
way given the lack of available truly pristine sites. This has often
resulted in the use of ‘least altered’ site as a surrogate for natural
because truly natural no longer exists. For example, the MA Sus-
tainable Yield Estimator (SYE) regressions (Archfield et al., 2010)
were developed using a set of ‘least altered’ reference sites. A sam-
ple of half of these reference basins revealed sites with up to 27%
impervious surface, up to 64.5 megaliters/yr/km2 water with-
drawls, up to 45.4 megaliters/yr/km2 water discharges, and 151
megaliters/km2 in storage volume. Similarly, the basins selected
by Carlisle et al. (2010) as reference sites averaged significantly
less storage and impervious cover than their non-reference sites
but included sites with up to 75% of the top water withdrawals
Fig. 10. Locations of 42 study stream gages in MA with the model estim
per area and the median water use was still 50% of the median
non-reference water use.

Second, our model provides a means to estimate the degree of
hydro-alteration at any ungaged site. The reference site approach
taken by Carlisle et al. (2010) requires at least a few years of flow
record to have the observed/altered flow with which to compare
the natural flow estimates. The SYE estimates altered flow, but only
altered by water withdrawals and discharges. Our analysis, on the
other hand, included a wide range of anthropogenic characteristics
and the final regression included dam storage volume and imper-
vious surface in addition to water withdrawals and discharges.

Our results are not without important limitations. First, our re-
sults are limited by the fact that only the State of MA within the six
New England states considered had water use data available with
georeferenced withdrawals and discharges. Having these data in
additional states would strengthen the regression results. Of
course, our approach can be applied without accurate data on
withdrawals and discharges, but given that these were two of
the four retained anthropogenic variables in the final regression
models, the reliability of the results may be suspect without these
data or with coarse and inaccurate estimates. It is also worth not-
ing that in other parts of the country county level data may be a
more useful than in Massachusetts where counties are large and
heterogeneous.

Second, the process of variable selection we used is complex
and one among many alternative approaches that could be used
for variable selection with unknown consequences. Additional
work is warranted to investigate the model sensitivity to inclusion
of different sets of predictors. We attempted to find a ‘‘good’’ and
parsimonious set of predictors but cannot guarantee that we found
the ‘‘best’’ set.

Third, the effects of highly correlated interdependent variables
are necessarily difficult to distinguish. Not surprisingly, anthropo-
genic modifications to basins are typically highly confounded; the
more developed a basin, typically the more impervious surface,
number of dams, and magnitude of water withdrawals and dis-
charges. It should be noted that this is a fundamental constraint fac-
ing all approaches. We attempted to minimize the multicollinearity
among predictors by carefully selecting a largely uncorrelated set of
ated ecochange percent indicated by size of the point on the map.
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variables. Despite this criterion, the final set of variables are not
truly independent. Therefore, we are not able to truly distinguish
the independent effect of each anthropogenic variable and the re-
sults depicted in Figs. 4–7 must be interpreted in this context.

Fourth, low flows (0.9 and 0.95 exceedence probabilities) were
the most difficult to predict accurately (Table 3), although our level
of errors are comparable to other studies (Vogel and Kroll, 1992;
Maidment, 1993). Price (2011) suggested that the influence of
subsurface topography should be considered in order to properly
model baseflow, and others have proposed measurements to
estimate a baseflow regression constant that could be used to
improve estimation accuracy of low flows (Vogel and Kroll,
1992). No doubt, our results would improve with the addition of
information on subsurface topography, but this is not generally
available.

Our regression models represent an average across the available
input data set, and thus the estimates produced are a representa-
tion of average conditions; the actual individual circumstances in
each basin will result in deviations from our predictions. Applying
the model to locations where conditions are known to deviate
should be avoided, such as largely groundwater dominated water-
sheds in southeastern MA.

Lastly, our aim was to estimate streamflow in the absence of
any anthropogenic basin modifications. Unfortunately, there are
no sites available with 0% impervious surface, so for this variable
we had to extrapolate to zero in order to implement our estimate
of ‘pristine’ natural conditions. Fortunately, the minimum percent
impervious surface was very low at 0.025%, so the extrapolation
was relatively minor. Zero values were present in the data for
the other three anthropogenic variables: dam storage, water
withdrawals, and discharges. Of course, having a few sites with
the complete absence of each anthropogenic characteristic does
not really provide a means to validate our natural streamflow
predictions across the remaining modified sites. Indeed, this is
the biggest limitation of our approach, but one that
fundamentally constrains any approach. The only way to validate
our results is to have sites with streamflow data prior to and after
anthropogenic modifications, which unfortunately are rare or
nonexistent.
5. Conclusions

We presented a method to evaluate the degree of hydrologic
alteration for a basin given the availability of data to characterize
a limited suite of anthropogenic basin characteristics. Impervious
cover data are readily available and improving in accuracy given
the use of satellite images and technology to process these images
into useful formats for analysis. Dam data that are maintained
nationally by the National Inventory of Dams includes point loca-
tions and storage volumes for the entire country. The critical data
to implement our approach are accurate point data for water with-
drawals and discharges such as we were able to obtain for the state
of Massachusetts. Our results provide a first look at empirical evi-
dence for the effects of basin alterations on streamflow that is typ-
ically only theorized.

The regional regressions we developed for each exceedance
probability improved the percent error compared to existing regio-
nal regression for similar statistics that used only least altered
sites. We have demonstrated that the ecochange metric is a conve-
nient metric for summarizing the cumulative impact of anthropo-
genic basin modifications using the flow duration curve without
the complexity and uncertainty involved with estimating a daily
time series of flow at each site.
We propose that our regression approach could be an effective
mechanism for estimating the degree of total streamflow alteration
in Massachusetts basins. Our approach could also be applied to
other locations if the necessary water withdrawal and discharge
data becomes available. In addition, it can be applied to any loca-
tion within the stream network, providing a tool for estimation
of alteration with wide applicability. Note, it is critical to analyze
streamflow alterations having considered these direct inputs and
outputs; limiting the analysis to basins unaffected by withdrawals
or discharges is too restrictive and biased towards the types of ba-
sins that have not been developed.

Models relating basin alterations to flow alteration are becom-
ing valuable tools in conservation efforts to protect and sustain our
water resources. In addition to creating a tool to estimate stream-
flow alteration at ungaged sites, our results have provided a step
toward an increased understanding of how humans alterations to
basins are affecting streamflow.
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Appendix A

The set of 98 variables from USGS GAGES II database considered
as independent variables.
Variable name
 Description
DRAIN_SQKM
 Watershed drainage area, sq km

BAS_COMPACTNESS
 Watershed compactness ratio, =

area/perimeter^2 � 100

LAT_CENT
 Latitude of centroid location of

basin, decimal degrees

LONG_CENT
 Longitude of centroid location of

basin, decimal degrees

PPTAVG_BASIN
 Mean annual precip (cm) for the

watershed

PPTAVG_SITE
 Mean annual precip (cm) at the

gage location

T_AVG_BASIN
 Average annual air temperature

for the watershed (�C)

T_AVG_SITE
 Average annual air temperature at

the gage location (�C)

T_MAX_BASIN
 Watershed average of maximum

monthly air temperature (�C)

T_MAXSTD_BASIN
 Standard deviation of maximum

monthly air temperature (�C)

T_MAX_SITE
 Gage location maximum monthly

air temperature (�C)
(continued on next page)
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Appendix A (continued)
Variable name
 Description
T_MIN_BASIN
 Watershed average of minimum
monthly air temperature (�C)
T_MINSTD_BASIN
 Standard deviation of minimum
monthly air temperature (�C)
T_MIN_SITE
 Gage location minimum monthly
air temperature (�C)
RH_BASIN
 Watershed average relative
humidity (%)
RH_SITE
 Site average relative humidity (%)

FST32F_BASIN
 Watershed average of mean day

of the year of first freeze

LST32F_BASIN
 Watershed average of mean day

of the year of last freeze

FST32SITE
 Site average of mean day of the

year of first freeze

LST32SITE
 Site average of mean day of the

year of last freeze

WD_BASIN
 Watershed average of annual

number of days of measurable
precipitation
WD_SITE
 Site average of annual number of
days of measurable precipitation
WDMAX_BASIN
 Watershed average of monthly
maximum number of days of
measurable precipitation
WDMIN_BASIN
 Watershed average of monthly
minimum number of days of
measurable precipitation
WDMAX_SITE
 Site average of monthly
maximum number of days of
measurable precipitation
WDMIN_SITE
 Site average of monthly minimum
number of days of measurable
precipitation
PET
 Mean-annual potential
evapotranspiration (PET)
SNOW_PCT_PRECIP
 Snow percent of total
precipitation estimate, mean for
period 1901–2000
PRECIP_SEAS_IND
 Precipitation seasonality index
JAN_PPT7100_CM
 Mean January precip (cm) for the
watershed
FEB_PPT7100_CM
 Mean February precip (cm) for the
watershed
MAR_PPT7100_CM
 Mean March precip (cm) for the
watershed
APR_PPT7100_CM
 Mean April precip (cm) for the
watershed
MAY_PPT7100_CM
 Mean May precip (cm) for the
watershed
JUN_PPT7100_CM
 Mean June precip (cm) for the
watershed
JUL_PPT7100_CM
 Mean July precip (cm) for the
watershed
AUG_PPT7100_CM
 Mean August precip (cm) for the
watershed
SEP_PPT7100_CM
 Mean September precip (cm) for
the watershed
OCT_PPT7100_CM
 Mean October precip (cm) for the
watershed
NOV_PPT7100_CM
 Mean November precip (cm) for
Appendix A (continued)
Variable name
 Description

the watershed

DEC_PPT7100_CM
 Mean December precip (cm) for

the watershed

JAN_TMP7100_DEGC
 Average January air temperature

for the watershed (�C)

FEB_TMP7100_DEGC
 Average February air temperature

for the watershed (�C)

MAR_TMP7100_DEGC
 Average March air temperature

for the watershed (�C)

APR_TMP7100_DEGC
 Average April air temperature for

the watershed (�C)

MAY_TMP7100_DEGC
 Average May air temperature for

the watershed (�C)

JUN_TMP7100_DEGC
 Average June air temperature for

the watershed (�C)

JUL_TMP7100_DEGC
 Average July air temperature for

the watershed (�C)

AUG_TMP7100_DEGC
 Average August air temperature

for the watershed (�C)

SEP_TMP7100_DEGC
 Average September air

temperature for the watershed
(�C)
OCT_TMP7100_DEGC
 Average October air temperature
for the watershed (�C)
NOV_TMP7100_DEGC
 Average November air
temperature for the watershed
(�C)
DEC_TMP7100_DEGC
 Average December air
temperature for the watershed
(�C)
CLAYAVE
 Average value of clay content (%)

SILTAVE
 Average value of silt content (%)

SANDAVE
 Average value of sand content (%)

ELEV_MEAN_M_BASIN
 Mean watershed elevation (m)

ELEV_MAX_M_BASIN
 Maximum watershed elevation

(m)

ELEV_MIN_M_BASIN
 Minimum watershed elevation

(m)

ELEV_MEDIAN_M_BASIN
 Median watershed elevation (m)

ELEV_STD_M_BASIN
 Standard deviation of elevation

(m) across the watershed

ELEV_SITE_M
 Elevation at gage location (m)

RRMEAN
 Dimensionless elevation – relief

ratio, calculated as
(ELEV_MEAN � ELEV_MIN)/
(ELEV_MAX � ELEV_MIN)
RRMEDIAN
 Dimensionless elevation – relief
ratio, calculated as
(ELEV_MEDIAN � ELEV_MIN)/
(ELEV_MAX � ELEV_MIN)
SLOPE_PCT
 Mean watershed slope, %

ASPECT_DEGREES
 Mean watershed aspect, �

(degrees of the compass, 0–360)

ASPECT_NORTHNESS
 Aspect ‘‘eastness’’. Ranges from

�1 to 1

ASPECT_EASTNESS
 Aspect ‘‘northness’’. Ranges from

�1 to 1

STREAMS_KM_SQ_KM
 Stream density, km of streams per

watershed sq km

STRAHLER_MAX
 Maximum Strahler stream order

in watershed
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Appendix A (continued)
Variable name
 Description
HIRES_LENTIC_PCT
 Percent of watershed surface area
covered by ‘‘Lakes/
Ponds’’ + ‘‘Reservoirs’’
PCT_1ST_ORDER
 Percent of stream lengths in the
watershed which are first-order
streams
PCT_2ND_ORDER
 Percent of stream lengths in the
watershed which are second-
order streams
HIRES_LENTIC_NUM
 Number of Lakes/
Ponds + Reservoir water
bodies
HIRES_LENTIC_DENS
 Density (#/sq km) of Lakes/
Ponds + Reservoir water bodies
HIRES_LENTIC_MEANSIZ
 Mean size (ha) of Lakes/
Ponds + Reservoir water bodies
FORESTNLCD06
 Watershed percent ‘‘forest’’

PLANTNLCD06
 Watershed percent ‘‘planted/

cultivated’’ (agriculture)

WATERNLCD06
 Watershed percent Open Water

DECIDNLCD06
 Watershed percent Deciduous

Forest

EVERGRNLCD06
 Watershed percent Evergreen

Forest

MIXEDFORNLCD06
 Watershed percent Mixed Forest

SHRUBNLCD06
 Watershed percent Shrubland

GRASSNLCD06
 Watershed percent Herbaceous

(grassland)

PASTURENLCD06
 Watershed percent Pasture/Hay

CROPSNLCD06
 Watershed percent Cultivated

Crops

WOODYWETNLCD06
 Watershed percent Woody

Wetlands

EMERGWETNLCD06
 Watershed percent Emergent

Herbaceous Wetlands

PDEN_2000_BLOCK
 Population density in the

watershed, persons per sq km

PDEN_DAY_LANDSCAN_

2007

Population density in the
watershed during the day,
persons per sq km
PDEN_NIGHT_LANDSCAN_
2007
Population density in the
watershed at night, persons per sq
km
ROADS_KM_SQ_KM
 Road density, km of roads per
watershed sq km
RD_STR_INTERS
 Number of road/stream
intersections, per km of total
basin stream length
IMPNLCD06
 Watershed percent impervious
surfaces
FRAGUN_BASIN
 Fragmentation Index of
‘‘undeveloped’’ land in the
watershed.
MINING92_PCT
 Percent 1quarries-strip mines–
gravel pits land cover in
watershed,
PCT_IRRIG_AG
 Percent of watershed in irrigated
agriculture
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