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Introduction 
The Conservation Assessment and Prioritization System (CAPS) is a computer model and sophisticated 
approach to assessing the ecological integrity of ecosystems. It is being used as a Level 1 assessment 
methodology as part of a comprehensive wetlands assessment and monitoring program for 
Massachusetts. When credible models of ecological integrity can be developed we use them to get a 
comprehensive assessment of all Massachusetts wetlands and use it to guide field-based assessments 
(rapid or intensive) and policy/management to maintain or improve wetland condition. 

For the past several years we have been using data collected in the field to compare the Indices of 
Ecological Integrity (IEI) calculated by CAPS with biological field data collected in streams, forested 
wetlands, salt marshes, and, more recently, shrub swamps. From these field data we have been able to 
calculate robust Indices of Biological Integrity (IBIs) that correspond to IEI gradients for streams and 
forested wetland, but not salt marshes. Salt marshes are probably the most threatened wetland type in 
Massachusetts and are particularly vulnerable to the effects of climate change, especially sea level rise. 

We have several possible explanations for why we have not yet been able to correlate CAPS IEI scores 
with field indices of salt marsh condition. 

1. Biological data collection has focused on the wrong taxa (plants and invertebrates). Perhaps 
other taxa (e.g. birds, fish) would be better indicators of salt marsh condition. 

2. Methods for sampling invertebrates and vegetation in salt marshes were not 
sufficient/appropriate. 

3. Given the low diversity of salt marsh plants and the tendency for large areas of salt marsh to be 
dominated by 2-3 species, perhaps species composition is the wrong metric for assessing 
vegetation. An alternative might be an assessment of plant health and productivity. 

4. Given the low diversity of salt marsh plants, perhaps it would be more appropriate to use 
physical indicators (creek widening, creek bank instability, peat density, inappropriate high 
marsh flooding) to assess salt marsh condition. 

5. The CAPS IEI model for salt marshes lacks metrics for important salt marsh stressors related to 
sediment dynamics, effects of increased nutrient loading on peat accretion, changes in marsh 
elevation relative to sea level rise, crab herbivory, and crab burrowing effects on peat density 
and stability. 

Any, all, or various combinations of these factors may be affecting our ability to model ecological 
integrity or assess condition in the field for salt marshes. This project investigates alternative ways of 
assessing salt marshes focusing on physical indicators of marsh condition and plant stress/productivity 
(addressing explanations 3-5 above). 

Field work in salt marshes is difficult because tide cycles affect our ability to access interior portions of 
marshes and to see/evaluate marsh characteristics due to ever changing water levels. Remote sensing 
(satellite imagery; aerial photographs) offers some potential for assessing salt marsh characteristics. 
However, these data may not be available at stages in the tide cycle when specific characteristics need 
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to be assessed, such as high tide for assessing high marsh flooding or low tide for assessing creek bank 
stability. 

In 2018, we initiated a project to investigate the use of unoccupied aerial systems (UAS) to collect data 
when timing is critical and test the potential of using various sensors to assess vegetation health/stress 
and physical characteristics of salt marshes. The goal is to use UAS technology as part of a nested 
approach to remote sensing (also including satellite data and aerial photographs) to assess the physical 
and perhaps biological (e.g. plant stress) condition of salt marshes. Ultimately, we hope to develop more 
effective CAPS metrics for assessing IEI of salt marshes by investigating, developing and using UAS-based 
remote sensing techniques, or using finer scale UAS data to help inform satellite image (e.g., Landsat) 
analyses.  

This first phase of the project focused on characterizing land cover and identifying threats and 
vulnerabilities in salt marshes by UAS flights to capture multispectral and multi-temporal data collected 
at different tidal stages and across field seasons to assess the condition of salt marshes. A related goal 
was to investigate, develop and refine UAS-related data collection and image analysis methodologies 
that can be replicated to assess salt marshes in Massachusetts and throughout New England. 

This report summarizes our approach and progress characterizing land cover and identifying threats and 
vulnerabilities in salt marshes during 2018 through 2020. We frequently refer to our approved Quality 
Assurance Project Plan (QAPP) which contains more detailed information about our protocols. Here, we 
discuss our sites, methods for data collection and data analysis, and our results. We also comment on 
challenges, limitations, and our next steps for this ongoing project. 
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Methods 
DEVELOP AND SUBMIT QAPPS  

A Quality Assurance Project Plan (QAPP) was developed by project personnel and collaborators for every 
component of this research project. The QAPP contains Standard Operating Procedures (SOPs), safety 
considerations, information about sites and collaborators, data quality procedures and objectives, and 
details about equipment. The QAPP includes the following appendices. 

● Appendix A - Remote Sensing via Unoccupied Aerial Systems (UAS) 

● Appendix B - Analysis of UAS Imagery to Characterize Tidal Hydrology, Identify Areas of Salt 
Marsh Erosion and Create Base Maps for Field Data Collection 

● Appendix C - Ground-Based Field Data Collection 

● Appendix D - Remote Sensing Image Classification Model 

● Appendix E - Salt Marsh Classification 

Work commenced once the QAPP was approved by the EPA. Changes to the QAPP were made in 
response to unanticipated challenges in the field and with equipment. When this occurred, deviations 
from the QAPP were recorded and the QAPP was revised and resubmitted for approval.  

PERMITTING & PERMISSIONS 

Prior to the field season, permissions were obtained or renewed from the landowner or managing 
agency for each field site. Prior to each UAS flight, air space permissions were obtained from air traffic 
controllers from any proximate airports (i.e. airports that are within 5 miles) and others according to 
protocol in Appendix A. 

STUDY SITES 

We worked collaboratively with partners to collect data from nine salt marshes in Massachusetts from 
2018 – 2020 (Figure 1). Sites along the North Shore of Massachusetts were Old Town Hill (Newbury) and 
Essex Bay (Essex). Sites along the South Shore were Peggotty Beach (Scituate), North River (Scituate), 
and South River (Marshfield). Sites on Cape Cod were Barnstable Great Marsh (Barnstable), Red River 
(Harwich and Chatham), and Wellfleet Bay Wildlife Sanctuary (Wellfleet). One site, Horseneck Beach 
(Westport), was on the coast of Buzzard’s Bay. Each site had its own mix of hydrology, stressors, 
anthropogenic activities, and history of natural events. Below is a brief description for each of the nine 
salt marsh sites.  

After we established an initial study area footprint for each site, it was decided to reduce the footprint 
size for several of the sites (to approximately 100 acres) to reduce the time required to fly the 
designated study areas. Reducing the time needed to acquire UAS imagery help ensure that tide 
conditions did not significantly change between the beginning and end of each flight.  
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Figure 1. Yellow pins identify the nine salt marsh sites that we assessed from 2018-2020 in 
Massachusetts.  
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Old Town Hill 

The Old Town Hill site (Figure 2) is located a few miles west of Plum Island and was selected because of 
specific interest expressed by The Trustees of Reservations (TTOR) which owns the land. TTOR has 
committed significant resources to studying a portion of the site, including developing a Sea Level 
Affecting Marshes Model (SLAMM) of land cover change over the next 50 years, which will complement 
the data that we collect. In 2020, TTOR began a salt marsh ditch remediation effort with an innovative 
nature-based method that was piloted at the U.S. Fish and Wildlife Service’s Parker River National 
Wildlife Refuge. Walking trails are found throughout this site and it is a popular place for recreation and 
bird watching. Historically, this marsh was used to produce and harvest salt hay.  

We installed 16 Ground Control Points (GCPs) (blue markers) at Old Town Hill that help us accurately 
georeference the imagery we collect so that they can be “stacked” and analyzed as a longitudinal 
dataset using geographic information systems (GIS) and other remote sensing analytic techniques. The 
full flight footprint covered 206 acres (outlined in blue) and had a perimeter of 3.8 miles. The reduced 
flight footprint covered 100 acres (outlined in bright pink) and had a perimeter of 2.26 miles. 

Figure 2. Old Town Hill (Newbury, MA) - Partnered with The Trustees of Reservations  
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Essex Bay 

The Essex Bay site (Figure 3) contains Dean’s Island and is located behind the Cape Ann Golf Course. It 
was selected because of specific interest expressed by The Trustees of Reservations which owns the 
land, and because it is a sentinel site being studied by MA Coastal Zone Management. During the winter 
of 2018, extreme cold, winds, and storm surge created notable sediment deposition events throughout 
the Great Marsh Estuary, which includes Essex Bay. A report about this event in Essex Bay has been 
published by Moore et al. 2019 from the University of New Hampshire.  

We installed 14 GCPs (blue markers) throughout the Essex Bay study site. The full flight footprint 
covered 215 acres (outlined in blue) and had a perimeter of 2.3 miles. The reduced flight footprint 
covered 100 acres (outlined in bright pink) and had a perimeter of 1.53 miles. 

 

Figure 3. Essex Bay (Essex, MA) - Partnered with The Trustees of Reservations and MA Coastal 
Zone Management 
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Peggotty Beach 

This site at Peggotty Beach (Figure 4) is located in the town of Scituate. It was selected because an 
intensive study being conducted by a team of geologists from UMass Amherst will provide us with 
complementary date on sediment dynamics in this marsh. Nor'easters during the winter of 2018 
drastically altered the beach and adjacent salt marsh morphology. This site presented an opportunity to 
study differences in spectral signatures associated with a rapidly changing salt marsh. 

We installed 7 GCPs (blue markers) throughout the Peggotty Beach marsh. The full flight footprint 
covered 104 acres (outlined in bright pink) and had a perimeter of 1.88 miles. A reduced flight footprint 
was not needed for this site.  

.  

Figure 4. Peggotty Beach (Scituate, MA) - Partnered with UMass Amherst Geosciences 
Department 
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North River 

The North River marsh site (Figure 5) is located at the mouth of the North River in the town of Scituate 
and contains portions of marsh owned by the Scituate Country Club. The beach area is overseen by the 
Massachusetts Audubon Society. This site was selected because 1) an intensive study being conducted 
by a team of geologists from UMass Amherst will provide complementary data on sediment dynamics, 
and 2) the opportunity to capture changes in beach morphology that is important to nesting birds. 

We installed 9 GCPs (blue markers) throughout the North River inlet. The full flight footprint covered 
163 acres (outlined in blue) and had a perimeter of 2.43 miles. A reduced flight footprint (outlined in 
bright pink) covered 90 acres and had a perimeter of 1.53 miles. 

 

Figure 5. North River Inlet (Scituate, MA) - Supported by Town of Scituate and Scituate Country 
Club; Partnered with UMass Amherst Geosciences Department 
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South River 

The South River marsh site (Figure 6) is located in the town of Marshfield, and it is currently being used 
for an intensive study of sediment dynamics being conducted by a team of geologists from UMass 
Amherst. We installed 11 GCPs (blue markers) throughout the South River inlet. The full flight footprint 
covered 144 acres (outlined in blue) and had a perimeter of 3 miles. A reduced flight footprint (outlined 
in bright pink) covered 97 acres and had a perimeter of 1.96 miles. 

 

Figure 6. South River Inlet (Marshfield, MA) - Supported by Town of Marshfield; Partnered with 
UMass Amherst Geosciences Department 
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Horseneck Beach 

The marsh site at Horseneck Beach (Figure 7) is located in the town of Westport and contains portions of 
a salt marsh managed by MA DCR. This site was selected because it is a sentinel site being studied by 
MA Coastal Zone Management and appeared to be experiencing subsidence and inundation issues. We 
installed 9 GCPs (blue markers) throughout the Horseneck Beach marsh. The full flight footprint covered 
131 acres (outlined in blue) and had a perimeter of 1.76 miles. A reduced flight footprint (outlined in 
bright pink) covered 100 acres and had a perimeter of 1.6 miles. 

 

Figure 7. Horseneck Beach (Westport, MA) - Supported by MA Coastal Zone Management and 
MA Department of Conservation and Recreation (DCR) 
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Barnstable Great Marsh 

The Barnstable Great Marsh study site (Figure 8) is located in a portion of the Barnstable Great Marsh in 
the town of Barnstable, and is managed by the Massachusetts Audubon Society. It was selected because 
it is a sentinel site being studied by MA Coastal Zone Management and it is largely unaffected by human 
land use impacts. We installed 8 GCPs (blue markers) throughout the Great Marsh. The full flight 
footprint covered 136 acres (outlined in blue) and had a perimeter of 2.13 miles. A reduced flight 
footprint (outlined in bright pink) covered 100 acres and had a perimeter of 1.86 miles. 

 

Figure 8. Barnstable Great Marsh Wildlife Sanctuary (Barnstable, MA) - Supported by the 
Massachusetts Audubon Society 
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Red River 

The Red River marsh site (Figure 9) spans the Chatham and Harwich town line. It is managed by the 
Harwich Conservation Trust and the Chatham Conservation Commission. It was selected because of its 
proximity to a barrier beach, it contains a tidal restriction, has experienced restoration events, and 
appears to have interesting sediment dynamics. We installed 9 GCPs (blue markers) throughout the site. 
The full flight footprint covered 61.8 acres (outlined in blue) and had a perimeter of 2.43 miles. A 
reduced flight footprint (outlined in bright pink) covered 48 acres and had a perimeter of 2.15 miles. A 
reduced flight footprint was needed for this site to avoid flying over the cars entering the parking lot 
entrance.  

 

Figure 9. Red River (Chatham and Harwich, MA) - Supported by Harwich Conservation Trust and 
the Chatham Conservation Commission 
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Wellfleet Bay Wildlife Sanctuary 

This Wellfleet Bay Wildlife Sanctuary site (Figure 10) is located in the town of Wellfleet and is managed 
by the Massachusetts Audubon Society. This site was selected because it is a protected area that is 
experiencing extensive die back events and crab herbivory issues. We installed 10 GCPs (blue markers) 
throughout the Great Marsh. The full flight footprint covered 99 acres (outlined in bright pink) and had a 
perimeter of 1.83 miles. A reduced flight footprint was not needed for this area. 

 

Figure 10. Wellfleet Bay Wildlife Sanctuary (Wellfleet, MA) - Supported by the Massachusetts 
Audubon Society 
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FLIGHT PREPARATION 

Ground Control Points (GCPs) 

Ground Control Points (GCPs) were installed in each salt marsh before conducting UAS flights and their 
locations documented by Real-time kinematic (RTK) positioning using a Trimble R10 RTK GNSS unit 
(Figure 11). 

 

Figure 11. Ground Control Points being laterally and vertically located using a Trimble R10 RTK 
GNSS unit in Essex Bay. GCPs are 1’x1’ PVC sheet board fitted with a ½’’ wide PVC pole that is 
inserted into the ground. A black 4’’ diameter circle is painted on the center of the board. 

We used GCPs to constrain the reconstruction of multispectral orthomosaics and digital elevation 
models (DEMs), or in other words, to as accurately as possible spatially align these remote sensing 
digital products. This is a critical step to ensure that all aerial images for a site, representing particular 
multispectral bands (visible blue, green or red; rededge, near-infrared, and short-wave infrared), and 
representing particular points in time (e.g., date and point in the tide cycle) can be accurately stacked 
for analysis.  

GCPs were strategically deployed such that each image captured by a sensor includes at least one GCP, 
or will be able to reference an area on the ground that overlaps at least one another image that contains 
a GCP. It took a substantial amount of effort to develop and test the appropriate design of these GCPs to 
ensure that they could withstand harsh weather conditions and remain in place, and team members 
doing image processing could see GCPs in images taken by all the spectral sensors used in this study. The 
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GCP design we settled on uses PCV Trim Boards with a painted black dot in the center for easier 
identification in the images. Each board was attached to a PCV pipe (not shown in Figure 11) that 
extends into the marsh platform to secure it in place.  

The number of GCPs that are placed at each site varied and did not exceed 16 GCPs for a given site. 
GCPs are placed such that the distance between each row and column of GCPs is equal to 2 times the 
longest dimension of the image footprint of the Zenmuse X3, divided by the square root of 2 (Figure 12).  

(𝐺𝐺𝐺𝐺𝐺𝐺 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 [𝑚𝑚])  =  (𝐺𝐺𝐺𝐺𝐺𝐺 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) × 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ 𝑚𝑚2]

√2
 

 

Figure 12. An illustration of GCP spacing distance. 

At 122 meters the vertical footprint of the Zenmuse X3 camera – one of the sensors on our UAS machine 
-- is 159 meters, and the horizontal footprint is 211 meters. In order to guarantee that an adequate 
number of images captured by the Zenmuse X3 contains a GCP while the camera is in the nadir position, 
the GCPs were spaced in a grid pattern every 280 meters along each axis in a square grid pattern. The 
camera on our “Phantom 4 Pro” quadcopter has a similar but slightly smaller image footprint. GCPs 
placed along the perimeter of a site were spaced no more than half of that distance, 140 meters, from 
the site boundary. See QAPP Appendix A for more information about GCP spacing.  
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The lateral and vertical locations and location accuracies of the GCPs were measured with the Trimble 
R10 Real-Time Kinematic (RTK) Global Positioning System (GPS) at the beginning of each season. By 
using GCPs recorded with this GPS technology, we achieve horizontal accuracies of a few centimeters 
and vertical accuracies within 10cm. GCPs remained in place for the duration of the field season and 
were either cleaned and reused, or replaced prior to the first flight of the next field season. 

Water Loggers 

Water loggers were generally installed in the salt marsh before conducting the first UAS flight. We either 
placed our own water loggers (HOBO U20L or HOBO U20) at a site or used water-level measurements 
from another research group. Water loggers measured temperature and barometric pressure every 10 
minutes. Barometric pressure was later converted into water depth using the HOBO Barometric 
Assistant package from the HOBOware program.  

Accurate water level readings relied on the current barometric pressure of the region at each data 
collection time interval. Either a HOBO U20L-01 water logger was installed in a dry upland area to 
measure barometric pressure every 10 minutes or we used barometric pressure data from a nearby 
weather station. 

UAS FLIGHTS 

Flights were conducted over the course of the 2018 – 2020 field seasons (May-November). Flights were 
conducted at low tide and high tide during spring tides, neap tides, and in between tides to capture 
maximum and minimum flooding extents. In some cases, mid tide was also captured. Data collected by 
sensors were used to train and test landscape classification models, develop hydrology models, and map 
flooding extent. 

Flight parameters differed for each site and date based on weather, UAS availability, and camera/sensor 
availability (Table 1). Flight parameter calculations and additional details about each camera, sensor, 
aircraft, accessories, and our flight SOP can be found in QAPP Appendix A. 
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Table 1. Ground speed limits for each aircraft and camera combination given the certain 
parameters in QAPP Appendix A and a blur tolerance factor of 0.5. 

Camera Aircraft Flight Speed 
Limit_Image Blur 
(m/s) 

Flight Speed 
Limit_Image 
Trigger (m/s) 

Flight Speed 
Limit_Aircraft 
(m/s) 

Flight Speed 
Limit_Lower 
Limit (m/s) 

SWIR 640 DJI Matrice 600 38.125 19.52 17 17 

Micasense 
RedEdge M 

DJI Matrice 600, 
Phantom 4 Pro 

21.181 17.893, 20.333 17 17 

Zenmuse X3 DJI Matrice 600 13.217 17.446 17 13.217 

Phantom 4 
Camera 

DJI Phantom 4 16.721 17.08 14 14 

Zenmuse XT 
2 (LWIR) 

Matrice 210 2.393 20.421 16 2.393 

Zenmuse XT 
2 (RGB) 

Matrice 210 16.013 18.254 16 16 

 

IMAGE PROCESSING 

Software 

The software used to process imagery was Agisoft Photoscan/Metashape. 

Tagging Ground Control Points (GCPs) 

“Tagging” GCPs was a critical step in creating accurate data products such as orthomosaics (composite 
imagery made from all the aerial imagery collected in one flight) and digital elevation models (DEMs). 
For each flight, one of our image processing team members had to locate and mark in Agisoft 
Photoscan/Metashape the very center of the GCPs in every spectral image (“band”) that contains a GCP. 
For example, if one image captured by the MicaSense sensor included a GCP, the analyst tagged the GCP 
in the visible blue, green and red images, as well as in the red-edge, or near-infrared bands. Despite our 
best efforts to create GCP markers detectable by all sensors, occasionally in the red edge, near-infrared 
or short-wave infrared imagery, the GCPs were challenging to locate and tag. In these instances, for geo-
referencing quality control, our rule was that the analyst could not continue onto other image 
processing steps until the average error in tagging each GCP across bands was < 8 cm.  
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RGB Orthomosaics and Digital Elevation Models 

Multispectral orthomosaics and DEMs are created in Agisoft Photoscan according to the workflow listed 
in QAPP Appendix A.  

The images from flights taken by our Zenmuse X3 sensor were used to develop a high-resolution RGB 
orthomosaic and a high-resolution Digital Elevation Model (see Data Products section below) for each 
site. Images taken with the MicaSense RedEdge M were used to develop a 5-band multispectral 
orthomosaic of reflectance values for each time period (stage in the tide cycle) that images were 
captured on that date. Images taken with the SWIR 640 were used to develop a single band orthomosaic 
of reflectance values for images captured at each time period on that date. 

Images from the MicaSense RedEdge M and SWIR 640 were calibrated to provide actual light reflectance 
values for the bands (visible blue, green and red, red edge, near infrared and shortwave IR) rather than 
simple “digital numbers,” representing color like the products of traditional digital cameras. This means 
the pixel values in each image represents a scientific measure of emitted light in that range of the 
electromagnetic spectrum. The calibration process uses data from the reflectance panel images and the 
sun sensor data. Once images from our sensors were calibrated, they were aligned based on GCP 
tagging and are used to build dense clouds and higher-level products similar to the workflow of the 
Zenmuse X3. More details about image processing can be found in QAPP Appendix A.  

Quality Control 

Procedures outlined in QAPP Appendix A and Appendix B were followed to maintain the highest 
standards for image acquisition, image processing, and interpretation. 

In order to maintain the highest standards of multispectral image and multispectral reflectance quality, 
the spectral calibration procedures outlined in QAPP Appendix A section 8.1, and the Micasense 
RedEdge M and SWIR 640 calibration steps outlined in the preflight procedure in 9.3.1 were followed. 
Additionally, flights were conducted so primary flight transects were perpendicular to the sun’s azimuth 
to ensure best lighting geometry for image acquisition. After each flight, images were uploaded to the 
field computer and checked to ensure that image capture was successful.  

Procedures in QAPP Appendix A section 9.5 were followed to maintain consistent quality of orthomosaic 
and DEM reconstruction. Important quality control components of our image processing protocol 
included removing all photos less than 0.65 in image quality (with exceptions), developing low-accuracy 
and highest accuracy alignments, importing and tagging GCPs in each band with a maximum allowable 
error, executing realignments, as well as developing a dense cloud, a mesh, and an orthomosaic on 
highest reconstruction settings. 

PHOTO INTERPRETATION FOR CREATION OF A BASE MAP FOR GROUND DATA COLLECTION 

In order to model salt marsh classification (classes and subclass) and stressors (classification attributes) 
it is necessary to collect ground‐based field data to train and validate the models. The purpose of photo 
interpretation is to use the RGB orthomosaics to inform the placement of transects for on-the-ground 
data collection. A photo interpreter reviewed each orthomosaic and identified patches of vegetation, 
bare ground and water likely to correspond to the classes and subclasses in our classification scheme 
(see below). The interpreter then created a series of “ricocheting transects” that would intersect as 
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many of the different classes and subclasses as possible (Figure 13). For more information see QAPP 
Appendix B. 

Field crews used ricocheting belt transects to characterize salt marshes using a non‐random, stratified 
sampling approach. A non‐random approach was used because it accounted for ease of access, provided 
an efficient approach to data collection, made it possible to achieve adequate representation of all 
classes and subclasses, and helped reduced impacts to marsh vegetation and substrate. 

 

Figure 13. Visual approach to sampling salt marsh landscape at the subclass level. The dashed 
line represents a ricocheting belt transect that intersects a diversity of classes and subclasses. 
Aerial photo is of a salt marsh in Rowley, Massachusetts. 

ON THE GROUND DATA COLLECTION 

The ground-based field data collection protocol can be found in QAPP Appendix C. Before heading to the 
site, the field manager and field assistants confirmed that all necessary permissions had been secured 
for parking and accessing the salt marsh. Once at the site, the field crew used the predetermined 2m 
wide ricocheting belted transects to guide data collection. A main goal of the ricocheting transect 
placement was to capture sufficient replicates for a diversity of classes, subclasses, and attributes using 
a 4m2 minimum plot unit. A Trimble R10 RTK GNSS receiver was used to measure the start and ending 
points of each subclass along the transect. The edges of water features were generally documented 
using a delineation approach instead of ricocheting transects. A classification scheme (see below) lists 
how the field crew recorded every plot’s class, subclass, and attributes in the RTK unit and on data 
sheets. The lateral and vertical accuracy of validation points were subject to the same accuracy 
requirements outlined in Appendix A, section 8.2.  
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CLASSIFICATION 

Salt marsh sampling plots were classified using the classification scheme described in QAPP Appendix E. 
Field crews recorded the transect number, plot number, class, subclass and all attributes associated with 
the plot being sampled. The objective of the classification scheme was to have a code made of numbers 
and letters that could describe every type of landscape cover in a 4m2 plot that could be observed in a 
New England salt marsh. In total, there were 15 vegetation subclasses, seven water subclasses, three 
bare ground subclasses, and 20 descriptive attributes.  

Modifications 

Over the course of three years of this phase of the project, we only made six modifications to the 
original classification scheme. These modifications were: 1) expanding subclass “01” to include 70%+ of 
tall form Spartina alterniflora rather than 90%, 2) adding subclass “13” to denote linear vegetated ditch 
edges that have a mix of S. alterniflora and high marsh species, and would later be turned into polygons, 
3) adding a subclass “14” to denote a notable presence of a flowering white clover species mixed with 
high marsh species, 4) adding subclass “15” to denote areas of macroalgae fixed to the substrate of 
shallow water features, 5) adding attribute “s” to denote sediment deposits, and 6) and adding attribute 
“t” to denote presence of trash/debris. 

 

Figure 14: Examples of using the classification scheme to denote 4m2 areas of slumping and 
eroding creek edges (22 kn) and bare areas with perforated peat and crab herbivory (33 ef).  
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Salt Marsh Classification 

Minimum mapping unit (scale of the threats/vulnerability, phenomena)  

Polygons: 2m x 2m, 4 sq m 

Linear: 0.5 m x 3 m 

First Level: Class (first digit - number) 

1 - Vegetated: > 30% vegetation cover 

2 - Water feature: 100% inundated at typical high tide with < 30% vegetation cover 

3 - Bare ground: Exposed at typical high tide with < 30% vegetation cover 

Second Level: Subclass (second and third digits - numbers) 

1 - Vegetated: > 30% vegetation cover 

01 - Low marsh (tall form Spartina alterniflora dominant): > 70%plant cover in tall form S. 
alterniflora 

02 - Intermediate marsh (mix of high marsh vegetation and tall form S. alterniflora): high marsh 
species dominant with 5-40% tall form S. alterniflora 

03 - Transitional marsh 1: short form S. alterniflora dominant (> 80%) mixed with typical high 
marsh species 

04 - Transitional marsh 2: short form S. alterniflora common or dominant (30-80%) mixed with 
typical high marsh species 

05 - Transitional marsh 3: S. patens & D. spicata dominant but mixed with 5-30% short form S. 
alterniflora 

06 - High marsh 1: > 90% plant cover in S. patens & D. spicata and < 5% short form S. alterniflora 

07 - High marsh 2: < 90% plant cover in S. patens & D. spicata, mixed with other high marsh 
species but < 10% shrub species and < 5% short form S. alterniflora  

08 - Juncus gerardii band: > 50% of marsh vegetation is Juncus gerardii 

09 - Salt-shrub marsh (high marsh vegetation mixed with shrub species): S. patens & D. spicata 
mixed with > 10% Iva frutescens, Limonium carolinianum, Baccharis Halimifolia 

10 - Salicornia or Suaeda marsh: > 30% areal coverage and > 50% vegetative cover of Salicornia 
spp. and/or Suaeda spp. 

11 - Brackish marsh: 50% of vegetative cover of brackish marsh species (e.g. Schoenoplectus 
spp., Bolboschoenus spp., Typha spp.) 

12 - Brackish marsh - Phragmites: > 30% vegetative cover of Phragmites australis 

13 - Vegetated ditch edges: mix of high marsh vegetation and intermediate form (neither tall 
nor short) Spartina alterniflora as linear features along the edges of water features 
(typically along the crown of ditch banks) 

14 – High marsh vegetation mixed with a flowering white clover species 

15 – Macroalgae fixed to the substrate of a shallow water feature 
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2 - Water: 100% inundated at typical high tide with < 30% vegetation cover 

21 - Ditch: linear feature, straight lines often in a grid formation 

22 - Natural creek: linear feature, branching and meandering 

23 - Dug runnel: linear feature, ditch-like, but shallower (6” - 12”) 

24 - Excavated sinuous creek: linear feature, like a natural creek but excavated, not natural 

25 - Panne/pool: polygon feature, not associated with ditches or evidence of excavation (spoil 
piles) 

26 - Artificial pool: polygon feature, associated with ditches or with evidence of excavation or 
berms/dikes 

27 - Unvegetated bank: sloped topography on low marsh substrate in regularly flooded, 
intertidal zone 

3 - Bare ground: exposed at typical high tide with < 30% vegetation cover 

31 - High marsh substrate - deposition: < 30% living vegetation due to the presence of overwash 
or ice rafted soil deposition on high marsh substrate in an irregularly flooded zone 

32 - High marsh substrate - wrack: < 30% living vegetation due to the presence of wrack/debris 
accumulation on high marsh substrate in an irregularly flooded zone 

33 - High marsh substrate - dieback/deinundated: bare ground on high marsh substrate in 
irregularly flooded zone 

Third Level: Attributes (fourth digit - letter) 

a. Healthy vegetation: < 30% of vegetation shows any indication of stress (discoloration, 
unusually stunted growth, thinning, foliage damage, wilting) 

b. Stressed vegetation: > 30% of vegetation shows any indication of stress (discoloration, 
unusually stunted growth, thinning, foliage damage, wilting) 

c. Cropped vegetation: > 30% of vegetation affected by herbivory 

d. Algal mat: > 50% of surface covered with matted algae 

e. Perforated peat: > 25 crab burrows per square meter 

f. Low density peat: marsh peats demonstrates significantly less resistance to probing than 
healthy peat (greater amount of peat volume is air or water) 

g. Slumping/eroding: > 50% of the area show indications of erosion or slumping 

h. Hypersaline: indicators of hypersalinity, based on vegetation and salt deposits, are present 

i. Artificially elevated: substrate, whether vegetated or not, has been anthropogenically 
elevated by the deposition of spoil or other material forming linear berms within the salt 
marsh 

j. Water at low tide: water feature holds water throughout a typical tide cycle 

k. Dewatered at low tide: water feature does not hold water at low tide during a typical tide 
cycle 
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l. Tidal flat: flat topography located in regularly flooded, intertidal zone 

m. Maintained: artificial water feature (ditch, runnel, excavated sinuous creek, artificial pool) 
has been recently constructed or maintained 

n. Non Maintained: artificial water feature (ditch, runnel, excavated sinuous creek, artificial 
pool) has does not appear to have been recently constructed or maintained 

o. Excavated pool: artificial pool was created by excavation 

p. Impounded pool: artificial pool was created by impoundment (including ditch plugs) 

q. OMWM: water feature is part of an Open Marsh Water Management system 

r. Widening: Water feature appears to be widening 

s. Sediment deposit: naturally deposited sediment that reduces the aerial coverage of 
vegetation, either temporarily or permanently, by >20% 

t. trash/debris washed onto the marsh that reduces the aerial coverage of vegetation, either 
temporarily or permanently, by >20% 
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Table 2. Attributes and applicable classes in the salt marsh classification system. 

Attribute Vegetated Water feature Bare soil 

a. Healthy vegetation X X  

b. Stressed vegetation X X  

c. Cropped vegetation X X X 

d. Algal mat  X X 

e. Perforated peat X X X 

f. Low density peat X X X 

g. Slumping/eroding X X X 

h. Hypersaline X X X 

i. Artificially elevated X X X 

j. Water at low tide  X  

k. Dewatered at low tide  X  

l. Tidal flat  X  

m. Maintained  X  

n. Unmaintained  X  

o. Excavated pool  X  

p. Impounded pool  X  

q. OMWM  X  

r. Widening  X  

s. Sediment deposit X X X 

t. Trash/Debris X X X 
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ANALYZING REMOTE SENSING DATA 

The ricocheting transect field data collected for this project (see QAPP Appendix C) were used as model 
reference training and validation data for individual sites. In order to generate training data for the 
model, the transect sampling plot data (see above, Figure 13) in the form of comma delimited value 
(CSV) files were transformed using GIS functions into ArcGIS “shapefiles” in the form of polygons 
representing 4m-wide belt transects. The salt marsh classification levels are table headers in each 
shapefile; this includes salt marsh classes, subclasses, and attributes (see QAPP Appendix E) along with 
other metadata. The polygons were used for processing remote sensing data described below to locate 
pixels for use in land cover classification training and validation. The production of these polygons based 
on field transect plot data for any site is a time consuming process when done manually. Consequently, 
we automated the process using the programming language Python and documented it using “Jupyter 
Notebook” so that the process can be easily replicated for multiple days of collection across multiple 
sites. Details of this process are described in QAPP Appendix D. 

For individual salt marsh sites, classification models were run with all available spectral orthomosaic 
imagery. This included all stages of tide cycles and all spectral bands. A suite of classification outputs 
were produced for this project and not all imagery were required or appropriate for creating each 
particular product. For example, model classification of salt marsh vegetation subclasses is performed 
with all available low-tide imagery and model classification of bare ground and water subclasses are 
performed with high-tide imagery. This flexibility yielded the ability to customize the classification model 
to fit the needs of the individual product/output. 

Quality Control 

Several procedures were followed to ensure UAS images taken at different time points could be used 
concurrently as model variables/attributes. See QAPP Appendix D to learn how we addressed spatial 
alignment, image quality, and shapefile standards. 
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RESULTS 
OVERVIEW OF WORK COMPLETED 

UAS Flights 

By the end of Fall 2020, we had collected data over three field seasons. In total, we have executed 149 
flights at nine sites that have a combined area of 1,259 acres of salt marsh habitat. This amount of 
diverse spectral and hydrological data were enough to execute desired spatial and temporal analyses. 
Spectral data were collected during every flight using either an RGB (Phantom 3, Phantom 4 Pro, or 
Zenmuse XT2), MicaSense RedEdge, and/or SWIR (short wave infrared) sensor. Flights were conducted 
at different tidal stages (low tide, mid tide, and high tide). A tally of flights by location, tidal stage, and 
sensor is presented in Table 3. 

Table 3. Number of UAS flights by location, tidal stage, and sensor used for the 2018-2020 field 
seasons. 

 

In general, we collected more spectral data during low tides and high tides than mid tides. As expected, 
more total flights have been conducted at sites that were part of our first field season in 2018 than sites 
added in 2019. Significantly fewer flights were conducted at 1) Barnstable Great Marsh, due to frequent 
low-flying planes and difficulty accessing the site with gear in tow, and 2) South River, due signal 
interference when ground-truthing and tightly clustered residential properties making flight patterns 
difficult to execute. 

Ground Truthing 

Land cover ground-truthing data were collected at all nine sites. Most of the data collection focused on 
vegetation and delineating the perimeter of water features. Details on the number of plot points taken 
for each subclass by site are presented in Table 4. In total, we collected data for 3,138 plot points across 
the nine sites. It is important to note that the total number of plot points is not directly related to the 
number of training and validation pixels available for each subclass, because the total area covered by 
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belt transects between two plot points can span from a few meters to up to 50 meters. In other words, 
there are many more training and validation pixels than there are plot points because of the ricocheting 
belt transect approach and the creation of 4m wide polygons of particular land cover classes using start 
and end points along the transect. Total area covered for each subclass were calculated after ground 
truthing data were converted into shapefiles (see QAPP Appendix D for details). 

Table 4: Total number of ground truthing points collected at each site by subclass. 

 

Our sites cover a range of elevations (Figure 15). The two sites at the lowest elevations - Red River and 
Westport - are located along the southern coastline of Massachusetts. Our data show that subclasses 
occurred at different elevations across the nine sites. This prompted us to consider whether inundation 
frequency and/or duration better explains the presence or absence of a certain subclass rather than 
elevation above mean sea level. 
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Figure 15. The range of elevation heights (in meters) of each subclass colored by site. 

Hydrology 

We collected hydrology data from all nine sites during at least one of the three field seasons. Hydrology 
data collected by MA CZM were used for the Essex Bay, Barnstable, and Horseneck Beach sites. For each 
site we had at least one water logger located at the bottom of a creek channel, and each logger’s 
location and elevation was surveyed with respect to the North American Vertical Datum 1988 (NAVD88). 
The water loggers are set to record the water level above their location every 10 minutes and were 
calibrated for changes in atmospheric pressure either using a secondary logger that is above the 
flooding level of high tides or using a proximate NOAA weather station. This allowed us to record the 
water level within the marsh at virtually any point in time during the three field seasons (2018-2020). 
See Figure 16 for an example of data obtained from the water logger. 
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Figure 16: Graph showing the barometric pressure (black), water temperature in Celsius (blue), 
and water level (m) (green) every 10 minutes at Wellfleet Bay Wildlife Sanctuary for the 2019 
field season. 

DATA PRODUCTS 

True Color (RGB) Orthomosaic 

True color orthomosaics were developed using the visual Blue, Green, and Red sensor images provided 
by the Phantom 4 Pro camera or the Zenmuse X3 on our Matrice 600 unoccupied aerial vehicle (UAV). 
These orthomosaics are made up of thousands of photos accurately stitched together in a process 
informed by the GCP tagging process. An accurate orthomosaic allowed us to identify features at the 
subclass and even attribute level, and was used to guide the placement of ricocheting transects. 
Orthomosaics can be visually compared on a seasonal or annual basis to identify surface changes in 
water features, bare ground, and vegetation subclasses. See Figure 17 for an example of a “true color” 
visible Red, Green and Blue (RGB) orthomosaic. 
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Figure 17. A low tide orthomosaic of the Red River site in Chatham and Harwich MA. Imagery 
captured in RGB with a DJI Phantom 4 Pro camera. 

Digital Elevation Models (DEMs)  

Through the Agisoft Photoscan photogrammetry process, Digital Elevation Models (DEMs) were created 
for each site (see Figure 18 for an example).  These products represent the elevation of the surface of 
the vegetation canopy, water, or exposed soil. It is not the same as a Digital Terrain Model, representing 
the elevation of the land surface or the marsh ‘platform’. In this report, we will just use the phrase DEM 
because those products represent the elevation of the land cover surface. 
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Figure 18. A low tide DEM of the Red River marsh, Chatham and Harwich, MA. Imagery captured 
in RGB with a DJI Phantom 4 Pro camera. 

The root mean-square error (RMSE) for the GCPs that we used to reconstruct an orthomosaic or DEM 
had to be less than or equal to ground-sampling distance for camera images used for that 
reconstruction. We developed DEMs from the highest resolution camera available. For DEM’s produced 
with a Phantom 4 Pro the tolerance for the RMSE is 3.3 centimeters, whereas DEM’s or Orthomosaics 
produced with a Micasense RedEdge M camera have tolerance for the RMSE of 8.3 cm.  

The most significant error in the DEM products we produced came from the fact that the images used in 
the DEM reconstruction do not penetrate the canopy of vegetation cover and thus, measure the 
elevation of the vegetation cover and not the underlying terrain. In other words, the data represent the 
elevation of vegetation or other exposed land cover – a digital surface model – rather than the earth 
surface underneath vegetation canopy, referred to as a Digital Terrain Model. This can make it difficult 
to understand flooding patterns strictly from the photogrammetry-derived DEMs. As Table 5 shows, this 
error varies significantly depending on the land cover class and subclass. Areas with low vegetation 
growth or no vegetation, such as class 31 (bare ground) and class 22 (creek channel), tend to have very 
low altitudinal errors in the DEM, whereas areas where vegetation tends to grow relatively tall, such as 
Class 12 (Phragmites), have larger altitudinal errors in the DEM. Error was calculated by taking the 
difference between the measured elevation with an RTK GNSS receiver and the elevation indicated in 
the DEM at that corresponding location. 
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Table 5. Summary statistics for the elevation errors by class at the Red River site; specifically the mean, 
standard deviation, median, minimum, and maximum error. Error is calculated by taking the difference 
between the measured elevation with an RTK GNSS receiver and the elevation indicated in the DEM at 
that corresponding location. 

Class Sample Count Mean (m) Standard Deviation (m) Median (m) Min (m) Max (m) 

33 8 0.076 0.057 0.059 0.006 0.178 

32 5 0.203 0.039 0.187 0.161 0.251 

31 8 -0.006 0.046 -0.005 -0.093 0.050 

22 25 0.161 0.166 0.112 -0.092 0.561 

12 40 0.344 0.725 0.468 -2.105 1.601 

11 42 0.500 0.214 0.464 0.178 1.193 

10 2 0.090 0.134 0.090 -0.005 0.185 

9 46 0.249 0.147 0.225 0.010 0.598 

8 4 0.188 0.043 0.179 0.145 0.248 

7 4 0.237 0.092 0.244 0.122 0.341 

6 11 0.182 0.057 0.180 0.090 0.294 

5 8 0.313 0.155 0.355 0.099 0.538 

4 28 0.192 0.077 0.181 -0.023 0.321 

3 42 0.221 0.106 0.208 0.040 0.479 

2 13 0.261 0.096 0.233 0.132 0.506 

1 40 0.385 0.222 0.377 0.049 0.982 

ALL 326 0.281 0.312 0.245 -2.105 1.601 

 

Temporal Changes in Elevation 

We used the Agisoft software environment to compare the DEMs constructed from low tide flights. By 
comparing the fine-scale DEMs every year, we identified which areas within a salt marsh were 
experiencing a loss or gain in elevation (Figure 19). It is important to remember that our current DEMs 
represent digital surface models (DSMs) because elevation measurements are based on the surface of 
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the vegetation canopy. Therefore, we feel more confident in elevation change measurements identified 
in dewatered creeks or areas of bare ground at low tide rather than within vegetation subclasses. In 
future work, we intend to explore the possibility of producing DEMs that are closer to digital terrain 
models (DTMs) by including adjustment factors based on RTK elevation data from the on-the-ground 
data collection or by using data from flights at low tide prior to the seasonal “green-up” in May.  

 

Figure 19: The results of a change in elevation analysis conducted in Agisoft. The output suggests 
that there are areas along Red River’s creek edge and the platform edge that have decreased in 
elevation by approximately a half a meter (colored light yellow) between a low tide flight 
conducted in 2019 and a low tide flight conducted in 2020. There is also one area that appears to 
have decreased in elevation by approximately one meter. 

Inundation Mapping 

Water logger data combined with the multispectral data collected from the UAS flights, provided 
information that we used to conduct several analyses with potential to provide detailed characterization 
of salt marsh tidal hydrology. Using the multispectral data, we used the Near Infrared (NIR) and/or the 
Short-wave Infrared (SWIR) images or “bands” to distinctly map the water extent at different tidal 
stages; water appears extremely dark and opaque in these bands, whereas vegetation and sediment 
appear much brighter, thus providing excellent contrast between regions that are inundated and not 
inundated (see Figures 20 & 21 for examples). The boundaries of inundation can then be compared to 
the DEM to infer the water elevation. 
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Figure 20. The extent of inundation at the Red River site for low tide on 08 August 2019 (light blue) 
and for high tide on 06 August 2019 (dark blue) as measured by the darkened regions in the NIR 
band. 
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Figure 21. The inundation extent of a northern section of the Westport marsh site at both low tide (light 
blue) and high tide (dark blue) on 26 July 2019 as measured by the darkened regions in the NIR band. 

Being able to measure the water level in situ with water loggers and with remote sensing techniques, in 
theory, should allow us to confirm the accuracy of remote sensing techniques to assess water level and 
inundation extent. Once appropriate techniques for inferring the water level from remotely sensed data 
are established, remote sensing data can then be used to define lines of elevation at varying tidal stages 
within the salt marsh to further refine the digital terrain model (Figure 22). 
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Figure 22. The boundary of the inundation extent as measured by the NIR band at high tide on 06 August 
2019 is indicated by the yellow line. The elevation values of the DEM at a sampling of points along these 
lines provide a means to estimate the water elevation. 

Development and refinement of these techniques is ongoing. In the case of high tide on 06 August 2019 
(Figure 22), we found a significant discrepancy between the water elevation as inferred from remotely 
sensed data and the elevation measured with the water logger. In the case of 26 July 2019 at Westport 
(Figure 21), however, there was close agreement between the elevation inferred from our remotely 
sensed data and the NOAA tide predictions for high tide. We will continue to develop and test our 
techniques for estimating water elevation from remotely sensed data.  

In our efforts to characterize tidal hydrology at our salt marsh sites, there are two primary complications 
that we are attempting to address. 

1. Our DEM products constitute a surface model that often measures the height of vegetation in a 
region in the salt marsh, not necessarily the peat surface; and, 

2. Regions of tall vegetation such as tall form Spartina alterniflora or Phragmites obstruct the view 
of water that may be inundating the peat at the base of plant, and so mapping the extent of the 
water can be difficult. 

We are investigating techniques to address these issues, such as adjusting the DEM elevation model by 
subtracting a central estimate for vegetation height that varies by land cover class, as well as refining 
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the spectral range or characteristics that indicate regions of inundated peat. Another means at assessing 
inundation is to adjust the automatic classification algorithm to provide estimates of probability of 
inundation based on the spectral response and training data. 

Automatic Land Cover Classification 

In order to characterize land cover and identify threats and vulnerabilities in salt marshes using remote 
sensing data, we began by linking our multispectral UAS imagery to our in-situ field and validation data. 
We did this through the machine learning algorithm, Random Forests (RF) classifier. Machine learning 
techniques are well suited for remotely sensed data and linking them to spectrally complex features, 
such as wetland cover classes, because of their ability to accept nonparametric data and parse through 
datasets with high-dimensional feature space (i.e. many multispectral bands or many land cover 
classes). RF, in particular, is a decision tree ensemble classifier that uses many different decision trees, 
taking the majority ‘vote’ of all trees to classify a single feature, which is, in this case, a single pixel. 

Ground-based field data were used to train and validate the RF classification models. While field crews 
were not able to collect spatially-balanced classification training data across entire study sites, by using 
belt transects instead of individual point locations, we were able to provide the classification models 
with substantial numbers of training pixels, enhancing the potential for high accuracy of the resulting 
classification. 

Different land cover features require different multi-spectral features as model inputs. For example, to 
map vegetation subclasses, only low tide imagery was used in RF modeling because high tide imagery 
can occlude vegetation spectral reflectance through inundation. Conversely, to predict bare ground and 
water classes, high-tide imagery is used. 

When run, RF classification outputs several model features. The first is a predicted classification of each 
pixel in the study site for the given salt marsh classification category of choice; for example, when 
running models to predict subclasses, each pixel is assigned a single subclass. These predictions can then 
be turned into categorical classification maps of salt marsh cover types across every study site (Figure 
23).  

The second model feature is an agreement assessment. Agreement between RF and the salt marsh 
classification class and subclass categories reference dataset acts as our estimate of model performance. 
For each classification, training and testing data were randomly split from our ground-truth data and a 
three-fold cross-validation (CV) methodology was used where either 70% or 60% of the reference 
polygons were used for training and either 30% or 40% of reference polygons were allocated for 
testing/validation. Agreement scores can vary considerably based on the assessment metric used. We 
chose out-of-bag (OOB) and overall agreement to consider more than one line of accuracy assessment. 
Agreement assessment is reported as percent accuracy at the end of each model run. 

A third model feature is the band importance score. This output yields insight into which model input 
feature (i.e., which multispectral band in a given orthomosaic) was the most ‘useful’ in classification. 
This helped us refine which orthomosaics worked best to predict different elements of our Salt Marsh 
Classification. 

The result of RF classification modeling was pixel-based maps showing Salt Marsh Classification features 
for each of the study sites (Figure 23). For any given map, we also have information on how accurate the 
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map is and which multispectral information was most important in creating the map. Classification 
accuracy is an ongoing continuous improvement effort. In some cases, more training data are required 
to classify and map rare classification features, such as cryptic/sparse vegetation types. As these input 
data are refined, so is classification accuracy. That said, our consideration of model inputs has yielded 
land cover classifications across study sites with accuracies that rarely fall below 90.0%.  

 

Figure 23. Random Forests land cover classification map of salt marsh vegetation subclasses in our 
Red River study site. 

We have made several study site visits to inspect the spatial and categorical accuracy of our 
classification maps. Importantly, our models were able to accurately map fine-scale salt marsh features, 
distinguishing very small patches of bare ground and water classes within a matrix of vegetation (Figure 
24). Post-classification field visits to qualitatively assess map accuracy, increased confidence in our 
results. 

The results of automatic classification efforts are (and will be) class and subclass classification maps for 
every salt marsh study site across Massachusetts.  
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Figure 24: Visual assessment of modeled land cover classification accuracy; shows how the model is 
able to accurately predict fine-scale salt marsh features such as small pools of water and patches of 
bare ground within a matrix of dense vegetation. 

Probability of Inundation 

When running machine learning classification algorithms on spatial data sets, outputs can include both 
hard and soft (fuzzy) classification. Automatic land cover classification falls under the category of hard 
classification because a single model feature (a single pixel) can only belong to one classification type. 
For example, RF hard classification will not allow a pixel to be classified as both water and bare ground 
at the same time. While this is very useful for creating classification maps, there is no flexibility. 
However, one benefit of the RF classifier is a ‘probability’ model output for a given classification. This 
means for every classification, there is a probability score assigned to each pixel for each class or 
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subclass, representing the likelihood that the pixel belongs to a given cover class. This allows for much 
greater flexibility in classification. This type of classification is especially powerful in wetland ecosystems 
where their inherent land cover classification means they can exist as both water and vegetation 
simultaneously.  

Fuzzy classification has the potential to greatly expand our understanding of salt marsh wetland 
dynamics and we’ve employed it in several ways thus far. One of the most powerful applications of our 
RF fuzzy classification has been a ‘probability of inundation’ map for each study site. This is derived by 
running a model to predict salt marsh classes (vegetation, bare ground, and water) and creating a fuzzy 
classification map of water probability. In this map, every pixel is assigned a likelihood of being water 
(this can include a probability of 0%), which can be interpreted as the probability of inundation for each 
pixel. We have run this classification on both low and high tides and are able to compare the difference 
between the two for insight into hydrological dynamics on the marsh platform. We can even use this to 
compare the probability of inundation over time to see how different locations on the marsh may be 
increasing in their inundation probability, potentially representing places that are vulnerable to 
drowning and die back. 

 

 

Figure 25. Map of the per-pixel probability of inundation in our Red River salt marsh study site, 
showing probabilities >25%.  
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Probability of Subclasses 

Similar to running classification on salt marsh classes to map probability of inundation, we are able to 
run fuzzy classification on salt marsh subclasses. These outputs show the probability of each pixel 
belonging to a given subclass. For example, we can map the likelihood of Spartina alterniflora on the 
marsh platform (Figure 26). One interpretation of this map is the display of the potential density of 
Spartina alterniflora for any given pixel; this is useful to know because while some pixels may represent 
pure Spartina alterniflora (showing very high probability scores), other pixels may be a dynamic mix of 
this species with other plants.   

In addition to being able to show species cover class ‘mixtures’, we can use these subclass probabilities 
to explore how hydrological dynamics may interact with different subclasses. For example, we are in the 
early stages of regression analysis to determine whether different vegetation characteristics may be 
predictors for marsh vulnerability to increasing inundation due to sea level rise.  

 

Figure 26. Map of the per-pixel probability of Spartina alterniflora vegetation subclasses in our 
Red River salt marsh study site, showing all probabilities on a relative gradient. 
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DISCUSSION 
The above results took substantial work to produce. Since we started this project, we’ve had to develop 
and refine methodologies for field transect inventories, GCP placement, various UAS-related 
procedures, image processing (photogrammetry and DEM production), field transect to polygon 
conversion, and various aspects of image-based analysis. In the latter, the processing of temporal stacks 
of UAS imagery required significant computer processing resources. However, after all this effort to in 
some ways invent methodology, the various results we demonstrate in various figures above, show both 
significant progress and promise. We’ve learned a great deal, and we’re producing products that will be 
extremely useful for analysis of salt marsh change.  In this section, we reflect on these lessons learned 
and challenges we have encountered. 

LIMITATIONS / LESSONS LEARNED / CHALLENGES AND CREATIVE SOLUTIONS 

Modified Classification 

We added new subclasses and attributes to our classification scheme every season after encountering a 
few areas that could not be accurately represented by the original classification scheme.  

Difficulty Accessing Marshes with Large Equipment 

While there are many salt marsh environments throughout coastal Massachusetts, not all were suitable 
for this project. The Great Marsh Wildlife Sanctuary in Barnstable was a desirable site for this project 
because it is a protected area, is expansive, and is a MA CZM sentinel site; however, it is not easily 
accessible with large equipment. In order to conduct a UAS flight, the pilot and crew need a staging area 
during high tide that also provides a clear line of sight on the flying UAV at all times. Accessing a proper 
staging area at Barnstable was not possible with the larger Matrice 600 UAV but was possible with the 
smaller Phantom 4 UAV.  

Eastern Equine Encephalitis (EEE) 

Data collection was temporarily halted in 2019 because of an Eastern Equine Encephalitis (EEE) virus 
outbreak in Massachusetts. The EEE virus is transmitted to humans by mosquitoes. Mosquitoes were 
present at all of our sites. Symptoms of EEE are brain swelling, fever, permanent neurological 
disabilities, and death. While EEE is a very rare disease, 35 communities in Massachusetts were ranked 
as ‘critical risk’ and 53 were ranked as “high risk” in late summer 2019. Some salt marsh sites were in 
communities ranked as “moderate risk” and bordered communities ranked as “high risk”. Field data 
collection and flights were suspended for a brief period of time to protect our team members while 
community risks escalated. When field data collection resumed, protocols were adjusted to ensure all 
team members were wearing apparel that protects them from mosquito bites (long sleeves, gloves, 
head nets, etc.) and had access to mosquito repellent.  

Overheated Equipment 

Another environmental condition that occasionally stalled the progress of this project was heat, 
particularly in the mid-to-late summer. All essential field equipment (UAVs and accessories, cell phones, 
RTK, etc.) exhibited battery-life and connectivity issues when temperatures exceeded 90°F. A canopy 
tent provided some shade and relief for UAS equipment. 
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Malfunctioning Equipment 

Essential UAS equipment tended to malfunction throughout each season. Returning and repairing UAS 
equipment was costly and time-intensive. We received malfunctioning equipment from distributors that 
had to be returned (e.g. a MicaSense RedEdge sensor), experienced months-long delays with a UAS 
repair service, and waited for foreign-made parts needed for routine maintenance and repairs. Delays 
were offset by having several back-up UAVs available for flights while our main UAV (Matrice 600) was 
being serviced. Although the back-up UAVs could not carry both a MicaSense RedEdge and SWIR sensors 
in tandem like the Matrice 600, we were able to mount a MicaSense RedEdge to the Matrice 210 and 
use a Phantom 4 to gather RGB and elevation data to build DEMs. 

Tagging GCPs 

An important first step in creating accurately aligned orthomosaics in AgiSoft was validating the x, y, and 
z (elevation) coordinates of each GCP. While these measurements were taken accurately in the field, 
they had to be matched with UAS images containing the GCPs. Image processing personnel had to 
validate the position of each GCP (a process called “tagging”) in each separate image that captured the 
GCP, in each spectral band. This was a time-intensive endeavor that required 6-8 hours of additional 
staff time for a single day’s worth of flights (three flights) that used the MicaSense RedEdge and SWIR 
sensors. 

Access to Sufficient Computer Processing Capacity 

When we started the project we built two high end remote desktops to do our Agisoft photogrammetry 
processing and our remote sensing image analysis work. Once we reached the point that we had enough 
orthomosaic imagery for a particular site, we quickly realized these high end desktop computers were 
not sufficiently powerful to meet the massive computational requirements needed for the land cover 
classification and other analyses. Consequently, in year 2019-20, we gained access to the Holyoke High 
Performance Computer Cluster – a supercomputer we call “Unity.” After some months learning how to 
operate high end remote sensing techniques on this platform, we had much improved computational 
performance. Functions that that would take days or even weeks to complete on the high end remote 
desktops, could be performed in minutes on Unity. This was a vast improvement in the speed of our 
computational analyses. In addition, we wrote processing scripts in Python that allowed us to run the 
same workflows for other sites using the same custom analytical software. These were all important 
successes and advances for this study. However, these advances were not without their own hurdles. 
We share the Unity supercomputer with other research efforts, and this platform requires periods of 
maintenance and does, on occasion, crash when asked to execute processes like orthomosaic 
alignments. All-in-all however, these computational challenges and our solutions represent important 
advances for this project. 

COVID-19 

Travel restrictions, infected personnel, isolation and quarantine periods, and changes in university 
research and hiring policies during the COVID-19 pandemic, contributed to delays in our 2020 field 
season. We also were not able to incorporate any new salt marsh sites into our portfolio due to COVID-
19 concerns. We developed new COVID-19 research protocols and eventually received approval from 
the University to resume data collection later in the 2020 field season. 
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NEXT STEPS 

We are continuing to optimize classification models for all sites. In early spring 2021, before vegetation 
emerged, we flew each site at low tide with a Phantom 4 Pro camera in order to build a DEM that better 
approximates a Digital Terrain Model (DTM) for each site. By capturing a marsh before it “greens up”, 
we expect the DEM or DTM produced will more accurately reflect the substrate topography rather than 
vegetation height, and elevation errors will be greatly reduced. We expect that these improved DTMs 
will strengthen hydrology-related classification models and allow us to better identify areas of erosion. 

As automatic classification outputs are generated for each site, we anticipate a need to revisit the sites 
with a Trimble RTK and validate/correct data products, correct additional training/validation data, and 
improve the accuracy of our classification scheme. 

As progress in understanding salt marsh vegetation and hydrology dynamics as seen through 
multispectral UAS imagery continues, so does our understanding of how to guide future machine 
learning classification models. We anticipate a mixture of hard classifiers and fuzzy classifiers to emerge 
as unique metrics of marsh vulnerability and integrity for different research questions (Table 6).  

Table 6 - Examples of research questions about marsh health and the machine learning 
classification products.  

Classification Product Research Question Example 

Hard classifier of classes (Water, Bare Ground, 
Vegetation) 

Where on the marsh is there water or bare 
ground in areas where they aren’t expected? 
(identifying marsh dieback, submergence) 

Fuzzy classification of classes (Water, Bare 
Ground, Vegetation) 

What is the probability of inundation across the 
marsh? (vulnerability to submergence) 

Hard classifier of vegetation subclasses (i.e. 
species level identification) 

Where do vegetation subclasses that indicate 
poor marsh health occur on the marsh? 
(vulnerability to submergence, dieback or other 
stressors) 

Fuzzy classifier of all subclasses Where do high probabilities of high marsh 
vegetation and high probabilities of inundation 
co-occur? (tendency toward submergence) 

 

In addition to ongoing progress on pixel-based spectral analysis of UAS imagery, we have begun to add a 
conceptual model for object-oriented analysis of geomorphological features on the marsh. This includes 
identifying marsh features and phenomena such as bank slumping, widening creek channels, and other 
types of erosion. This type of work is distinctly different from pixel-based spectral analysis because it 
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considers a cluster of pixels together (considered a “feature”). We plan on working with the UMass 
Amherst Center for Data Science to utilize cutting edge computer-vision methodologies to help answer 
key research questions about marsh features. 

CONCLUSIONS 

The purpose of this project is to determine whether a combination of remote sensing technology, 
ground truthing, and machine-based learning can help scientists and stakeholders map, monitor, and 
assess salt marsh ecosystems. In this phase of the project we created and tested detailed protocols in 
preparation for salt marsh data collection, collected an extensive amount of spectral data from salt 
marshes using remote sensing technology, collected a substantial amount of on-the-ground data for use 
in model training and validation, and have begun analyzing data using complex modeling approaches. 
We can confirm that spectral data collected with UAS coupled with on the ground data collection and 
machine-based learning, can accurately classify salt marsh landscapes at a finer resolution than other 
approaches currently in use.  
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